Skip to main content
Log in

A pronounced evolutionary shift of the pseudoautosomal region boundary in house mice

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

The pseudoautosomal region (PAR) is essential for the accurate pairing and segregation of the X and Y chromosomes during meiosis. Despite its functional significance, the PAR shows substantial evolutionary divergence in structure and sequence between mammalian species. An instructive example of PAR evolution is the house mouse Mus musculus domesticus (represented by the C57BL/6J strain), which has the smallest PAR among those that have been mapped. In C57BL/6J, the PAR boundary is located just ~700 kb from the distal end of the X chromosome, whereas the boundary is found at a more proximal position in Mus spretus, a species that diverged from house mice 2–4 million years ago. In this study we used a combination of genetic and physical mapping to document a pronounced shift in the PAR boundary in a second house mouse subspecies, Mus musculus castaneus (represented by the CAST/EiJ strain), ~430 kb proximal of the M. m. domesticus boundary. We demonstrate molecular evolutionary consequences of this shift, including a marked lineage-specific increase in sequence divergence within Mid1, a gene that resides entirely within the M. m. castaneus PAR but straddles the boundary in other subspecies. Our results extend observations of structural divergence in the PAR to closely related subspecies, pointing to major evolutionary changes in this functionally important genomic region over a short time period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Anunciado RV, Imamura T, Ohno T, Horio F, Namikawa T (2000) Developing a new model for non-insulin dependent diabetes mellitus (NIDDM) by using the Philippine wild mouse, Mus musculus castaneus. Exp Anim 49(1):1–8

    Article  PubMed  CAS  Google Scholar 

  • Bergero R, Charlesworth D (2009) The evolution of restricted recombination in sex chromosomes. Trends Ecol Evol 24(2):94–102

    Article  PubMed  Google Scholar 

  • Boursot P, Din W, Anand R, Darviche D, Dod B, VonDeimling F, Talwar G, Bonhomme F (1996) Origin and radiation of the house mouse: mitochondrial DNA phylogeny. J Evol Biol 9(4):391–415

    Article  CAS  Google Scholar 

  • Burgoyne PS (1982) Genetic homology and crossing over in the X and Y chromosomes of mammals. Hum Genet 61(2):85–90

    Article  PubMed  CAS  Google Scholar 

  • Burgoyne PS, Mahadevaiah SK, Sutcliffe MJ, Palmer SJ (1992) Fertility in mice requires X-Y pairing and a Y-chromosomal “spermiogenesis” gene mapping to the long arm. Cell 71(3):391–398

    Article  PubMed  CAS  Google Scholar 

  • Bussell JJ, Pearson NM, Kanda R, Filatov DA, Lahn BT (2006) Human polymorphism and human–chimpanzee divergence in pseudoautosomal region correlate with local recombination rate. Gene 368:94–100

    Article  PubMed  CAS  Google Scholar 

  • Charchar FJ, Svartman M, El-Mogharbel N, Ventura M, Kirby P, Matarazzo MR, Ciccodicola A, Rocchi M, D’Esposito M, Graves JAM (2003) Complex events in the evolution of the human pseudoautosomal region 2 (PAR2). Genome Res 13(2):281–286

    Article  PubMed  CAS  Google Scholar 

  • Chen JF, Lu F, Chen SS, Tao SH (2006) Significant positive correlation between the recombination rate and GC content in the human pseudoautosomal region. Genome 49(5):413–419

    Article  PubMed  CAS  Google Scholar 

  • Cooke HJ, Brown WR, Rappold GA (1985) Hypervariable telomeric sequences from the human sex chromosomes are pseudoautosomal. Nature 317(6039):687–692

    Article  PubMed  CAS  Google Scholar 

  • Dal Zotto L, Quaderi NA, Elliott R, Lingerfelter PA, Carrel L, Valsecchi V, Montini E, Yen CH, Chapman V, Kalcheva I et al (1998) The mouse Mid1 gene: implications for the pathogenesis of Opitz syndrome and the evolution of the mammalian pseudoautosomal region. Hum Mol Genet 7(3):489–499

    Article  PubMed  CAS  Google Scholar 

  • Das PJ, Chowdhary BP, Raudsepp T (2009) Characterization of the bovine pseudoautosomal region and comparison with sheep, goat, and other mammalian pseudoautosomal regions. Cytogenet Genome Res 126(1–2):139–147

    Article  PubMed  CAS  Google Scholar 

  • Duret L, Galtier N (2009) Biased gene conversion and the evolution of mammalian genomic landscapes. Ann Rev Genomics Hum Genet 10:285–311

    Article  CAS  Google Scholar 

  • Duret L, Mouchiroud D, Gautier C (1995) Statistical analysis of vertebrate sequences reveals that long genes are scarce in GC-rich isochores. J Mol Evol 40(3):308–317

    Article  PubMed  CAS  Google Scholar 

  • Ellis N, Goodfellow PN (1989) The mammalian pseudoautosomal region. Trends Genet 5(12):406–410

    Article  PubMed  CAS  Google Scholar 

  • Ellis N, Yen P, Neiswanger K, Shapiro LJ, Goodfellow PN (1990) Evolution of the pseudoautosomal boundary in old world monkeys and great apes. Cell 63(5):977–986

    Article  PubMed  CAS  Google Scholar 

  • Filatov DA, Gerrard DT (2003) High mutation rates in human and ape pseudoautosomal genes. Gene 317(1–2):67–77

    Article  PubMed  CAS  Google Scholar 

  • Freije D, Helms C, Watson MS, Donis-Keller H (1992) Identification of a second pseudoautosomal region near the Xq and Yq telomeres. Science 258(5089):1784–1787

    Article  PubMed  CAS  Google Scholar 

  • Gabriel-Robez O, Rumpler Y, Ratomponirina C, Petit C, Levilliers J, Croquette MF, Couturier J (1990) Deletion of the pseudoautosomal region and lack of sex-chromosome pairing at pachytene in two infertile men carrying an X;Y translocation. Cytogenet Cell Genet 54(1–2):38–42

    Article  PubMed  CAS  Google Scholar 

  • Galtier N (2004) Recombination, GC-content and the human pseudoautosomal boundary paradox. Trends Genet 20(8):347–349

    Article  PubMed  CAS  Google Scholar 

  • Gaudenz K, Roessler E, Quaderi N, Franco B, Feldman G, Gasser DL, Wittwer B, Horst J, Montini E, Opitz JM et al (1998) Opitz G/BBB syndrome in Xp22: mutations in the MID1 gene cluster in the carboxy-terminal domain. Am J Hum Genet 63(3):703–710

    Article  PubMed  CAS  Google Scholar 

  • Geraldes A, Basset P, Gibson B, Smith KL, Harr B, Yu H-T, Bulatova N, Ziv Y, Nachman MW (2008) Inferring the history of speciation in house mice from autosomal, X-linked, Y-linked and mitochondrial genes. Mol Ecol 17(24):5349–5363

    Article  PubMed  Google Scholar 

  • Graves JA (1995) The evolution of mammalian sex chromosomes and the origin of sex determining genes. Philos Trans R Soc Lond B Biol Sci 350(1333):305–311

    Article  PubMed  CAS  Google Scholar 

  • Graves JA, Wakefield MJ, Toder R (1998) The origin and evolution of the pseudoautosomal regions of human sex chromosomes. Hum Mol Genet 7(13):1991–1996

    Article  PubMed  CAS  Google Scholar 

  • Guénet JL, Nagamine C, Simon-Chazottes D, Montagutelli X, Bonhomme F (1990) Hst-3: an X-linked hybrid sterility gene. Genet Res 56(2–3):163–165

    Article  PubMed  Google Scholar 

  • Hale DW, Washburn LL, Eicher E (1993) Meiotic abnormalities in hybrid mice of the C57BL/6J × Mus spretus cross suggest a cytogenetic basis for Haldane’s rule of hybrid sterility. Cytogenet Cell Genet 63(4):221–234

    Article  PubMed  CAS  Google Scholar 

  • Harbers K, Soriano P, Müller U, Jaenisch R (1986) High frequency of unequal recombination in pseudoautosomal region shown by proviral insertion in transgenic mouse. Nature 324(6098):682–685

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa M, Kishino H, Yano T (1985) Dating of the human–ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22(2):160–174

    Article  PubMed  CAS  Google Scholar 

  • Hobolth A, Christensen OF, Mailund T, Schierup MH (2007) Genomic relationships and speciation times of human, chimpanzee, and gorilla inferred from a coalescent hidden Markov model. PLoS Genet 3(2):e7

    Article  PubMed  Google Scholar 

  • Huang SW, Friedman R, Yu N, Yu A, Li WH (2005) How strong is the mutagenicity of recombination in mammals? Mol Biol Evol 22(3):426–431

    Article  PubMed  CAS  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17(8):754–755

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa A, Matsuda Y, Namikawa T (2000) Detection of quantitative trait loci for body weight at 10 weeks from Philippine wild mice. Mamm Genome 11(10):824–830

    Article  PubMed  CAS  Google Scholar 

  • Iwase M, Satta Y, Hirai Y, Hirai H, Imai H, Takahata N (2003) The amelogenin loci span an ancient pseudoautosomal boundary in diverse mammalian species. Proc Natl Acad Sci USA 100(9):5258–5263

    Article  PubMed  CAS  Google Scholar 

  • Iwase M, Kaneko S, Kim H, Satta Y, Takahata N (2007) Evolutionary history of sex-linked mammalian amelogenin genes. Cells Tissues Organs 186(1):49–59

    Article  PubMed  Google Scholar 

  • Janaswami PM, Birkenmeier EH, Cook SA, Rowe LB, Bronson RT, Davisson MT (1997) Identification and genetic mapping of a new polycystic kidney disease on mouse chromosome 8. Genomics 40(1):101–107

    Article  PubMed  CAS  Google Scholar 

  • Kasahara T, Abe K, Mekada K, Yoshiki A, Kato T (2010) Genetic variation of melatonin productivity in laboratory mice under domestication. Proc Natl Acad Sci USA 107(14):6412–6417

    Article  PubMed  CAS  Google Scholar 

  • Keane TM, Goodstadt L, Danecek P, White MA, Wong K, Yalcin B, Heger A, Agam A, Slater G, Goodson M et al (2011) Mouse genomic variation and its effect on phenotypes and gene regulation. Nature 477(7364):289–294

    Article  PubMed  CAS  Google Scholar 

  • Keitges E, Rivest M, Siniscalco M, Gartler SM (1985) X-linkage of steroid sulphatase in the mouse is evidence for a functional Y-linked allele. Nature 315(6016):226–227

    Article  PubMed  CAS  Google Scholar 

  • Kent WJ (2002) BLAT: the BLAST-like alignment tool. Genome Res 12(4):656–664

    PubMed  CAS  Google Scholar 

  • Kipling D, Salido EC, Shapiro LJ, Cooke HJ (1996a) High frequency de novo alterations in the long-range genomic structure of the mouse pseudoautosomal region. Nat Genet 13(1):78–80

    Article  PubMed  CAS  Google Scholar 

  • Kipling D, Wilson HE, Thomson EJ, Lee M, Perry J, Palmer S, Ashworth A, Cooke HJ (1996b) Structural variation of the pseudoautosomal region between and within inbred mouse strains. Proc Natl Acad Sci USA 93(1):171–175

    Article  PubMed  CAS  Google Scholar 

  • Kvaløy K, Galvagni F, Brown WR (1994) The sequence organization of the long arm pseudoautosomal region of the human sex chromosomes. Hum Mol Genet 3(5):771–778

    Article  PubMed  Google Scholar 

  • Lahn BT, Page DC (1999) Four evolutionary strata on the human X chromosome. Science 286(5441):964–967

    Article  PubMed  CAS  Google Scholar 

  • Lancioni A, Pizzo M, Fontanella B, Ferrentino R, Napolitano LMR, De Leonibus E, Meroni G (2010) Lack of Mid1, the mouse ortholog of the Opitz syndrome gene, causes abnormal development of the anterior cerebellar vermis. J Neurosci 30(8):2880–2887

    Article  PubMed  CAS  Google Scholar 

  • Lyons MA, Wittenburg H, Li R, Walsh KA, Leonard MR, Korstanje R, Churchill GA, Carey MC, Paigen B (2003) Lith6: a new QTL for cholesterol gallstones from an intercross of CAST/Ei and DBA/2J inbred mouse strains. J Lipid Res 44(9):1763–1771

    Article  PubMed  CAS  Google Scholar 

  • Lyons MA, Wittenburg H, Li R, Walsh KA, Korstanje R, Churchill GA, Carey MC, Paigen B (2004) Quantitative trait loci that determine lipoprotein cholesterol levels in an intercross of 129S1/SvImJ and CAST/Ei inbred mice. Physiol Genomics 17(1):60–68

    Article  PubMed  CAS  Google Scholar 

  • Marais G (2003) Biased gene conversion: implications for genome and sex evolution. Trends Genet 19(6):330–338

    Article  PubMed  CAS  Google Scholar 

  • Matsuda Y, Imai HT, Moriwaki K, Kondo K, Bonhomme F (1982) X-Y chromosome dissociation in wild derived Mus musculus subspecies, laboratory mice, and their F1 hybrids. Cytogenet Cell Genet 34(3):241–252

    Article  PubMed  CAS  Google Scholar 

  • Matsuda Y, Hirobe T, Chapman VM (1991) Genetic basis of X-Y chromosome dissociation and male sterility in interspecific hybrids. Proc Natl Acad Sci USA 88(11):4850–4854

    Article  PubMed  CAS  Google Scholar 

  • Matsuda Y, Moens PB, Chapman VM (1992) Deficiency of X and Y chromosomal pairing at meiotic prophase in spermatocytes of sterile interspecific hybrids between laboratory mice (Mus domesticus) and Mus spretus. Chromosoma 101(8):483–492

    Article  PubMed  CAS  Google Scholar 

  • Mohandas TK, Speed RM, Passage MB, Yen PH, Chandley AC, Shapiro LJ (1992) Role of the pseudoautosomal region in sex-chromosome pairing during male meiosis: meiotic studies in a man with a deletion of distal Xp. Am J Hum Genet 51(3):526–533

    PubMed  CAS  Google Scholar 

  • Montoya-Burgos JI, Boursot P, Galtier N (2003) Recombination explains isochores in mammalian genomes. Trends Genet 19(3):128–130

    Article  PubMed  CAS  Google Scholar 

  • Palmer S, Perry J, Ashworth A (1995) A contravention of Ohno’s law in mice. Nat Genet 10(4):472–476

    Article  PubMed  CAS  Google Scholar 

  • Palmer S, Perry J, Kipling D, Ashworth A (1997) A gene spans the pseudoautosomal boundary in mice. Proc Natl Acad Sci USA 94(22):12030–12035

    Article  PubMed  CAS  Google Scholar 

  • Pamilo P, Bianchi NO (1993) Evolution of the Zfx and Zfy genes: rates and interdependence between the genes. Mol Biol Evol 10(2):271–281

    PubMed  CAS  Google Scholar 

  • Perry J, Ashworth A (1999) Evolutionary rate of a gene affected by chromosomal position. Curr Biol 9(17):987–989

    Article  PubMed  CAS  Google Scholar 

  • Perry J, Palmer S, Gabriel A, Ashworth A (2001) A short pseudoautosomal region in laboratory mice. Genome Res 11(11):1826–1832

    PubMed  CAS  Google Scholar 

  • Posada D, Buckley T (2004) Model selection and model averaging in phylogenetics: advantages of akaike information criterion and Bayesian approaches over likelihood ratio tests. Syst Biol 53(5):793–808

    Article  PubMed  Google Scholar 

  • Quaderi NA, Schweiger S, Gaudenz K, Franco B, Rugarli EI, Berger W, Feldman GJ, Volta M, Andolfi G, Gilgenkrantz S et al (1997) Opitz G/BBB syndrome, a defect of midline development, is due to mutations in a new RING finger gene on Xp22. Nat Genet 17(3):285–291

    Article  PubMed  CAS  Google Scholar 

  • Rattray AJ, McGill CB, Shafer BK, Strathern JN (2001) Fidelity of mitotic double-strand-break repair in Saccharomyces cerevisiae: a role for SAE2/COM1. Genetics 158(1):109–122

    PubMed  CAS  Google Scholar 

  • Raudsepp T, Chowdhary BP (2008) The horse pseudoautosomal region (PAR): characterization and comparison with the human, chimp and mouse PARs. Cytogenet Genome Res 121(2):102–109

    Article  PubMed  CAS  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19(12):1572–1574

    Article  PubMed  CAS  Google Scholar 

  • Ross MT, Grafham DV, Coffey AJ, Scherer S, McLay K, Muzny D, Platzer M, Howell GR, Burrows C, Bird CP et al (2005) The DNA sequence of the human X chromosome. Nature 434(7031):325–337

    Article  PubMed  CAS  Google Scholar 

  • Rouyer F, Simmler MC, Johnsson C, Vergnaud G, Cooke HJ, Weissenbach J (1986) A gradient of sex linkage in the pseudoautosomal region of the human sex chromosomes. Nature 319(6051):291–295

    Article  PubMed  CAS  Google Scholar 

  • Rugarli EI, Adler DA, Borsani G, Tsuchiya K, Franco B, Hauge X, Disteche C, Chapman V, Ballabio A (1995) Different chromosomal localization of the Clcn4 gene in Mus spretus and C57BL/6J mice. Nat Genet 10(4):466–471

    Article  PubMed  CAS  Google Scholar 

  • Salcedo T, Geraldes A, Nachman MW (2007) Nucleotide variation in wild and inbred mice. Genetics 177(4):2277–2291

    Article  PubMed  CAS  Google Scholar 

  • Salido EC, Li XM, Yen PH, Martin N, Mohandas TK, Shapiro LJ (1996) Cloning and expression of the mouse pseudoautosomal steroid sulphatase gene (Sts). Nat Genet 13(1):83–86

    Article  PubMed  CAS  Google Scholar 

  • Schiebel K, Meder J, Rump A, Rosenthal A, Winkelmann M, Fischer C, Bonk T, Humeny A, Rappold G (2000) Elevated DNA sequence diversity in the genomic region of the phosphatase PPP2R3L gene in the human pseudoautosomal region. Cytogenet Cell Genet 91(1–4):224–230

    Article  PubMed  CAS  Google Scholar 

  • She JX, Bonhomme F, Boursot P, Thaler L, Catzeflis F (1990) Molecular phylogenies in the genus Mus: comparative analysis of electrophoretic, scnDNA hybridization, and mtDNA RFLP data. Biol J Linn Soc 41(1–3):83–103

    Article  Google Scholar 

  • Shi Q, Spriggs E, Field LL, Ko E, Barclay L, Martin RH (2001) Single sperm typing demonstrates that reduced recombination is associated with the production of aneuploid 24, XY human sperm. Am J Med Genet 99(1):34–38

    Article  PubMed  CAS  Google Scholar 

  • Simmler MC, Rouyer F, Vergnaud G, Nyström-Lahti M, Ngo KY, de la Chapelle A, Weissenbach J (1985) Pseudoautosomal DNA sequences in the pairing region of the human sex chromosomes. Nature 317(6039):692–697

    Article  PubMed  CAS  Google Scholar 

  • Skaletsky H, Kuroda-Kawaguchi T, Minx PJ, Cordum HS, Hillier L, Brown LG, Repping S, Pyntikova T, Ali J, Bieri T et al (2003) The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes. Nature 423(6942):825–837

    Article  PubMed  CAS  Google Scholar 

  • Soriano P, Keitges EA, Schorderet DF, Harbers K, Gartler SM, Jaenisch R (1987) High rate of recombination and double crossovers in the mouse pseudoautosomal region during male meiosis. Proc Natl Acad Sci USA 84(20):7218–7220

    Article  PubMed  CAS  Google Scholar 

  • Strathern JN, Shafer BK, McGill CB (1995) DNA synthesis errors associated with double-strand-break repair. Genetics 140(3):965–972

    PubMed  CAS  Google Scholar 

  • Suzuki H, Shimada T, Terashima M, Tsuchiya K, Aplin K (2004) Temporal, spatial, and ecological modes of evolution of Eurasian Mus based on mitochondrial and nuclear gene sequences. Mol Phylogenet Evol 33(3):626–646

    Article  PubMed  CAS  Google Scholar 

  • Swofford DL (2002) PAUP*: Phylogenetic analysis using parsimony (*and other methods). Sinauer Associates, Sunderland

    Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24(8):1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Van Laere AS, Coppieters W, Georges M (2008) Characterization of the bovine pseudoautosomal boundary: Documenting the evolutionary history of mammalian sex chromosomes. Genome Res 18(12):1884–1895

    Article  PubMed  Google Scholar 

  • White MA, Ané C, Dewey CN, Larget BR, Payseur BA (2009) Fine-scale phylogenetic discordance across the house mouse genome. PLoS Genet 5(11):e1000729

    Article  PubMed  Google Scholar 

  • White MA, Stubbings M, Dumont BL, Payseur BA (2012) Genetics and evolution of hybrid male sterility in house mice. Genetics 191(3)

  • Winter J, Lehmann T, Krauss S, Trockenbacher A, Kijas Z, Foerster J, Suckow V, Yaspo M-L, Kulozik A, Kalscheuer V et al (2004) Regulation of the MID1 protein function is fine-tuned by a complex pattern of alternative splicing. Hum Genet 114(6):541–552

    Article  PubMed  CAS  Google Scholar 

  • Yi S, Summers TJ, Pearson NM, Li WH (2004) Recombination has little effect on the rate of sequence divergence in pseudoautosomal boundary 1 among humans and great apes. Genome Res 14(1):37–43

    Article  PubMed  CAS  Google Scholar 

  • Yi N, Zinniel DK, Kim K, Eisen EJ, Bartolucci A, Allison DB, Pomp D (2006) Bayesian analyses of multiple epistatic QTL models for body weight and body composition in mice. Genet Res 87(1):45–60

    Article  PubMed  CAS  Google Scholar 

  • Young AC, Kirkness EF, Breen M (2008) Tackling the characterization of canine chromosomal breakpoints with an integrated in-situ/in-silico approach: the canine PAR and PAB. Chromosome Res 16(8):1193–1202

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Beth Dumont for useful discussions on meiosis and recombination and Francois Bonhomme and Annie Orth for providing the CIM strain. This research was funded by NSF Grant DEB 0918000. MAW was supported by an NLM training grant in Computation and Informatics in Biology and Medicine to the University of Wisconsin (NLM 2T15LM007359).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. White.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 119 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

White, M.A., Ikeda, A. & Payseur, B.A. A pronounced evolutionary shift of the pseudoautosomal region boundary in house mice. Mamm Genome 23, 454–466 (2012). https://doi.org/10.1007/s00335-012-9403-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-012-9403-5

Keywords

Navigation