Mammalian Genome

, Volume 23, Issue 1–2, pp 3–18 | Cite as

Evolutionary genomics of dog domestication

  • Robert K. Wayne
  • Bridgett M. vonHoldt


We review the underlying principles and tools used in genomic studies of domestic dogs aimed at understanding the genetic changes that have occurred during domestication. We show that there are two principle modes of evolution within dogs. One primary mode that accounts for much of the remarkable diversity of dog breeds is the fixation of discrete mutations of large effect in individual lineages that are then crossed to various breed groupings. This transfer of mutations across the dog evolutionary tree leads to the appearance of high phenotypic diversity that in actuality reflects a small number of major genes. A second mechanism causing diversification involves the selective breeding of dogs within distinct phenotypic or functional groups, which enhances specific group attributes such as heading or tracking. Such progressive selection leads to a distinct genetic structure in evolutionary trees such that functional and phenotypic groups cluster genetically. We trace the origin of the nuclear genome in dogs based on haplotype-sharing analyses between dogs and gray wolves and show that contrary to previous mtDNA analyses, the nuclear genome of dogs derives primarily from Middle Eastern or European wolves, a result more consistent with the archeological record. Sequencing analysis of the IGF1 gene, which has been the target of size selection in small breeds, further supports this conclusion. Finally, we discuss how a black coat color mutation that evolved in dogs has transformed North American gray wolf populations, providing a first example of a mutation that appeared under domestication and selectively swept through a wild relative.


Gray Wolf Wolf Population East Asian Origin American Kennel Club Coat Color Mutation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adams JR, Kelly BT, Waits LP (2003) Using faecal DNA sampling and GIS to monitor hybridization between red wolves (Canis rufus) and coyotes (Canis latrans). Mol Ecol 12(8):2175–2186PubMedCrossRefGoogle Scholar
  2. Akey JM, Ruhe AL, Akey DT et al (2010) Tracking footprints of artificial selection in the dog genome. Proc Natl Acad Sci USA 107(3):1160–1165PubMedCrossRefGoogle Scholar
  3. American Kennel Club (1992) The complete dog book, 18th edn. Macmillian, New YorkGoogle Scholar
  4. Anderson T, vonHoldt BM, Candille SI et al (2009) Molecular and evolutionary history of melanism in North American gray wolves. Science 323(5919):1339–1343PubMedCrossRefGoogle Scholar
  5. Andersone Z, Lucchini V, Randi E et al (2002) Hybridisation between wolves and dogs in Latvia as documented using mitochondrial and microsatellite DNA markers. Mamm Biol 67:79–90CrossRefGoogle Scholar
  6. Ash EC (1927) Dogs: their history and development. Randall House, Santa BarbaraGoogle Scholar
  7. Bannasch D, Young A, Myers J et al (2010) Localization of canine brachycephaly using an across breed mapping approach. PLoS ONE 5(3):e9632PubMedCrossRefGoogle Scholar
  8. Bohling J, Waits LP (2011) Assessing the prevalence of hybridization between sympatric Canis species surrounding the red wolf (Canis rufus) recovery area in North Carolina. Mol Ecol 20(10):2142–2156PubMedCrossRefGoogle Scholar
  9. Boyko AR (2011) The domestic dog: man’s best friend in the genomic era. Genome Biol 12(2):216PubMedCrossRefGoogle Scholar
  10. Boyko AR, Quignon P, Lin L et al (2009) A simple genetic architecture underlies morphological variation in dogs. PLoS Biol 8(8):e1000451 CrossRefGoogle Scholar
  11. Boyko AR, Quignon P, Li L et al (2010) A simple genetic architecture underlies morphological variation in dogs. PLoS Biol 8(8):e1000451PubMedCrossRefGoogle Scholar
  12. Bryc K, Velez C, Karafet T et al (2010a) Genome-wide patterns of population structure and admixture among Hispanic/Latino populations. Proc Natl Acad Sci USA 107(Suppl 2):8954–8961PubMedCrossRefGoogle Scholar
  13. Bryc K, Auton A, Nelson MR et al (2010b) Genome-wide patterns of population structure and admixture in West Africans and African Americans. Proc Natl Acad Sci USA 107(2):786–791PubMedCrossRefGoogle Scholar
  14. Buerkle CA, Lexer C (2008) Admixture as the basis for genetic mapping. Cell 23(12):686–694Google Scholar
  15. Cadieu E, Neff M, Quignon P et al (2009) Coat variation in the domestic dog is governed by variants in three genes. Science 326(5949):150–153PubMedCrossRefGoogle Scholar
  16. Chase K, Carrier DR, Adler FR et al (2005) Interaction between the X chromosome and an autosome regulates size sexual dimorphism in Portuguese Water Dogs. Genome Res 15(12):1820–1824Google Scholar
  17. Chase K, Jones P, Martin A et al (2009) Genetic mapping of fixed phenotypes: disease frequency as a breed characteristic. J Hered 100(Suppl 1):S37–S41PubMedCrossRefGoogle Scholar
  18. Cheng CY, Hao WH, Patterson N et al (2009) Admixture mapping of 15, 280 African Americans identifies obesity susceptibility loci on chromosomes 5 and X. PLoS Genet 5(5):e1000490PubMedCrossRefGoogle Scholar
  19. Cheng CY, Reich D, Coresh J et al (2010a) Admixture mapping of obesity-related traits in African Americans: the Atherosclerosis Risk in Communities (ARIC) study. Obesity 18:563–572PubMedCrossRefGoogle Scholar
  20. Cheng CY, Reich D, Wong TY et al (2010b) Admixture mapping scans identify a locus affecting retinal vascular caliber in hypertensive African Americans: the Atherosclerosis Risk in Communities (ARIC) study. PLoS Genet 6(4):e1000908PubMedCrossRefGoogle Scholar
  21. Clark LA, Wahl JM, Rees CA et al (2006) Retrotransposon insertion in SILV is responsible for merle patterning of the domestic dog. Proc Natl Acad Sci USA 103(5):1376–1381PubMedCrossRefGoogle Scholar
  22. Coulson T, MacNulty DR, Stahler DR et al (2011) Modeling effects of environmental change on wolf population dynamics, trait evolution, and life history. Science 334(6060):1275–1278Google Scholar
  23. Darwin C (1859) The origin of species. Penguin Press, LondonGoogle Scholar
  24. Davis SJ, Valla FR (1978) Evidence for domestication of the dog 12, 000 years ago in the Natufian of Israel. Nature 276:608–610CrossRefGoogle Scholar
  25. Dayan T (1994) Early domesticated dogs of the Near East. J Archaeol Sci 21:640–663CrossRefGoogle Scholar
  26. Dennis-Bryan K, Clutton-Brock J (1988) Dogs of the last hundred years at the British Museum (Natural History). British Museum (Natural History), LondonGoogle Scholar
  27. Dodman NH, Karlsson EK, Moon-Fanelli A et al (2010) A canine chromosome 7 locus confers compulsive disorder susceptibility. Mol Psychiatr 15(1):8–10CrossRefGoogle Scholar
  28. Drake AG, Klingenberg CP (2010) Large-scale diversification of skull shape in domestic dogs: disparity and modularity. Am Nat 175(3):289–301PubMedCrossRefGoogle Scholar
  29. Epstein H (1971) The origins of the domestic animals of Africa, vol. 1. Africana Publishing, New YorkGoogle Scholar
  30. Fain S, Straughan D, Taylor B (2010) Genetic outcomes of wolf recovery in the western Great Lakes states. Conserv Genet 11(5):1747–1765CrossRefGoogle Scholar
  31. Fredrickson R, Hedrick P (2006) Dynamics of hybridization and introgression in red wolves and coyotes. Conserv Biol 20(4):1272–1283PubMedCrossRefGoogle Scholar
  32. Galibert F, Quignon P, Hitte C et al (2011) Toward understanding dog evolutionary and domestication history. C R Biol 334(3):190–196PubMedCrossRefGoogle Scholar
  33. Genomes Project Consortium (2010) A map of human genome variation from population-scale sequencing. Nature 467:1061–1073CrossRefGoogle Scholar
  34. Germonpré M, Sablin M, Stevens R et al (2009) Fossil dogs and wolves from Palaeolithic sites in Belgium, the Ukraine and Russia: osteometry, ancient DNA and stable isotopes. J Archaeol Sci 36:473–490CrossRefGoogle Scholar
  35. Gray MM, Granka JM, Bustamante CD et al (2009) Linkage disequilibrium and demographic history of wild and domestic canids. Genetics 181:1493–1505PubMedCrossRefGoogle Scholar
  36. Gray MM, Sutter NB, Ostrander EA et al (2010) The IGF1 small dog haplotype is derived from Middle Eastern grey wolves. BMC Biol 8:16PubMedCrossRefGoogle Scholar
  37. Housley DJ, Venta PJ (2006) The long and short of it: evidence that FGF5 is a major determinant of canine ‘hair’-itability. Anim Genet 37(4):309–315PubMedCrossRefGoogle Scholar
  38. Huson HJ, Parker HG, Runstadler J et al (2010) A genetic dissection of breed composition and performance enhancement in the Alaskan sled dog. BMC Genet 11:71PubMedCrossRefGoogle Scholar
  39. Hutt FB (1979) Genetics for dog breeders. WH Freeman, San FranciscoGoogle Scholar
  40. Jones P, Chase K, Martin A et al (2008) Single-nucleotide polymorphism-based association mapping of dog stereotypes. Genetics 179:1033–1044PubMedCrossRefGoogle Scholar
  41. Kaplan NL, Hudson RR, Langley CH (1989) The “hitchhiking effect” revisited. Genetics 123:887–899PubMedGoogle Scholar
  42. Karlsson EK, Baranowska I, Wade CM et al (2007) Efficient mapping of Mendelian traits in dogs through genome-wide association. Nat Genet 39(11):1321–1328PubMedCrossRefGoogle Scholar
  43. Kays R, Curtis A, Kirchman JJ (2010) Rapid adaptive evolution of northeastern coyotes via hybridization with wolves. Biol Lett 6:89–93PubMedCrossRefGoogle Scholar
  44. Kirkness EF, Bafna V, Halpern AL et al (2003) The dog genome: survey sequencing and comparative analysis. Science 301(5641):1898–1903PubMedCrossRefGoogle Scholar
  45. Kukekova A, Trut LN, Chase K et al (2010) Mapping loci for fox domestication: deconstruction/reconstruction of a behavioral phenotype. Behav Genet 41(4):593–606PubMedCrossRefGoogle Scholar
  46. Lindblad-Toh K, Wade CM, Mikkelsen TS et al (2005) Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature 438(7069):803–819PubMedCrossRefGoogle Scholar
  47. Macdonald DW, Barrett P (1993) Mammals of Britain and Europe. Harper Collins, New YorkGoogle Scholar
  48. McCarthy MI, Abecasis GR, Cardon LR et al (2008) Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat Rev Genet 9(5):356–369PubMedCrossRefGoogle Scholar
  49. Morey D (1994) The early evolution of the domestic dog. Am Sci 82:336–347Google Scholar
  50. Morey DF (2010) Dogs: domestication and the development of a social bond. Cambridge University Press, New YorkGoogle Scholar
  51. Olsen SJ, Olsen JW (1977) The Chinese wolf ancestor of new World dogs. Science 197:533–535PubMedCrossRefGoogle Scholar
  52. Ostrander EA, Kruglyak L (2000) Unleashing the canine genome. Genome Res 10(9):1271–1274PubMedCrossRefGoogle Scholar
  53. Ostrander EA, Wayne RK (2005) The canine genome. Genome Res 15:1706–1716Google Scholar
  54. Ovodov MD, Crockford SJ, Kuzmin YV et al (2011) A 33, 000-year-old incipient dog from the Altai Mountains of Siberia: Evidence of the earliest domestication disruption by the last glacial maximum. PLoS ONE 6(7):e22821PubMedCrossRefGoogle Scholar
  55. Pang JF, Kluetsch C, Zou XJ et al (2009) mtDNA data indicate a single origin for dogs south of the Yangtze River, less than 16, 300 years ago, from numerous wolves. Mol Biol Evol 26(12):2849–2864PubMedCrossRefGoogle Scholar
  56. Parker HG, Ostrander EA (2005) Canine genomics and genetics: running with the pack. PLoS Genet 1(5):507–513CrossRefGoogle Scholar
  57. Parker HG, Kim LV, Sutter NB et al (2004) Genetic structure of the purebred domestic dog. Science 304(5674):1160–1164PubMedCrossRefGoogle Scholar
  58. Parker HG, vonHoldt BM, Quignon P et al (2009) An expressed fgf4 retrogene is associated with breed-defining chondrodysplasia in domestic dogs. Science 325(5943):995–998PubMedCrossRefGoogle Scholar
  59. Patterson N, Hattangadi N, Lane B et al (2004) Methods for high-density admixture mapping of disease genes. Am J Hum Genet 74(5):979–1000PubMedCrossRefGoogle Scholar
  60. Pilgrim KL, Boyd DK, Forbes SH (1998) Testing for wolf-coyote hybridization in the Rocky Mountains using mitochondrial DNA. J Wildlife Manage 62(2):683–689CrossRefGoogle Scholar
  61. Pollinger JP, Bustamante CD, Fledel-Alon A et al (2005) Selective sweep mapping of genes with large phenotypic effects. Genome Res 15(12):1809–1819PubMedCrossRefGoogle Scholar
  62. Price AL, Patterson N, Yu F et al (2007) A genomewide admixture map for Latino populations. Am J Hum Genet 80(6):1024–1036PubMedCrossRefGoogle Scholar
  63. Randi E, Lucchini V (2002) Detecting rare introgression of domestic dog genes into wild wolf Canis lupus populations by Bayesian admixture analyses of microsatellite variation. Conserv Genet 3:31–45CrossRefGoogle Scholar
  64. Reich DE, Cargill M, Bolk A et al (2001) Linkage disequilibrium in the human genome. Nature 411:199–204PubMedCrossRefGoogle Scholar
  65. Sablin MV, Khlopachev GA (2002) The earliest ice age dogs: evidence from Eliseevichi. Curr Anthropol 43:795–799CrossRefGoogle Scholar
  66. Salmon Hillbertz NH, Isaksson M, Karlsson EK et al (2007) Duplication of FGF3, FGF4, FGF19 and ORAOV1 causes hair ridge and predisposition to dermoid sinus in Ridgeback dogs. Nat Genet 39(11):1318–1320PubMedCrossRefGoogle Scholar
  67. Savolainen P, Zhang YP, Luo J et al (2002) Genetic evidence for an East Asian origin of domestic dogs. Science 298:1610–1613PubMedCrossRefGoogle Scholar
  68. Seldin MF, Posaniuc B, Price AL (2011) New approaches to disease mapping in admixed populations. Nat Rev Genet 12:523–528PubMedCrossRefGoogle Scholar
  69. Shearin AL, Ostrander EA (2010a) Canine morphology: hunting for genes and tracking mutations. PLoS Biol 8(3):e1000310PubMedCrossRefGoogle Scholar
  70. Shearin AL, Ostrander EA (2010b) Leading the way: canine models of genomics and disease. Dis Model Mech 3(1–2):24–34Google Scholar
  71. Smith JM, Haigh J (1974) The hitch-hiking effect of a favourable gene. Genet Res 23(1):23–35PubMedCrossRefGoogle Scholar
  72. Stephan W, Wiehe THE, Lenz MW (1992) The effect of strongly selected substitutions on neutral polymorphism: Analytical results based on diffusion theory. Theor Pop Biol 41:237–254CrossRefGoogle Scholar
  73. Stockard C (1941) Genetic and endocrinic basis for differences in form and behavior. Wistar Institute, PhiladelphiaGoogle Scholar
  74. Sundqvist AK, Bjornerfeldt S, Leonard JA et al (2006) Unequal contribution of sexes in the origin of dog breeds. Genetics 172:1121–1128PubMedCrossRefGoogle Scholar
  75. Sutter NB, Ostrander EA (2004) Dog star rising: the canine genetic system. Nat Rev Genet 5(12):900–910PubMedCrossRefGoogle Scholar
  76. Sutter NB, Bustamante CD, Chase K et al (2007) A single IGF1 allele is a major determinant of small size in dogs. Science 316:112–115PubMedCrossRefGoogle Scholar
  77. Tang H, Coram M, Wang P et al (2006) Reconstructing genetic ancestry blocks in admixed individuals. Am J Hum Genet 79(1):1–12PubMedCrossRefGoogle Scholar
  78. Vilà C, Wayne RK (1999) Hybridization between wolves and dogs. Conserv Biol 13(1):195–198CrossRefGoogle Scholar
  79. Vilà C, Savolainen P, Maldonado JE et al (1997) Multiple and ancient origins of the domestic dog. Science 276:1687–1689PubMedCrossRefGoogle Scholar
  80. Vilà C, Walker C, Sundqvist A et al (2003) Combined use of maternal, paternal and bi-parental genetic markers for the identification of wolf-dog hybrids. Heredity 90(1):17–24PubMedCrossRefGoogle Scholar
  81. Vilà C, Seddon J, Ellegren H (2005) Genes of domestic mammals augmented by backcrossing with wild ancestors. Trends Genet 21(4):214–218PubMedCrossRefGoogle Scholar
  82. vonHoldt BM, Stahler DR, Smith DW et al (2008) The genealogy and genetic viability of reintroduced yellowstone gray wolves. Mol Ecol 17(1):252–274PubMedCrossRefGoogle Scholar
  83. vonHoldt BM, Pollinger JP, Lohmueller KE et al (2010) Genome-wide SNP and haplotype analyses reveal a rich history underlying dog domestication. Nature 464:898–903PubMedCrossRefGoogle Scholar
  84. vonHoldt BM, Pollinger JP, Earl DA et al (2011) A genome-wide perspective on the evolutionary history of enigmatic wolf-like canids. Genome Res 21(8):1294–1305PubMedCrossRefGoogle Scholar
  85. Wayne RK (1986a) Cranial morphology of domestic and wild canids: the influence of development on morphological change. Evolution 4:243–261CrossRefGoogle Scholar
  86. Wayne RK (1986b) Limb morphology of domestic and wild canids: the influence of development on morphologic change. J Morphol 187:301–319PubMedCrossRefGoogle Scholar
  87. Wayne RK, Ostrander EA (2007) Lessons learned from the dog genome. Trends Genet 23(11):557–567PubMedCrossRefGoogle Scholar
  88. Wilcox B, Walkowicz C (1995) The atlas of dog breeds of the World, 5th edn. TFH Publications, NeptuneGoogle Scholar
  89. Winkler CA, Nelson GW, Smith MW (2010) Admixture mapping comes of age. Annu Rev Genome Human Genet 11:65–89CrossRefGoogle Scholar
  90. Yang J, Benyamin B, McEvoy BP et al (2010) Common SNPs explain a large proportion of the heritability for human height. Nat Genet 42(7):565–569PubMedCrossRefGoogle Scholar
  91. Zeder MA, Emshwiller E, Smith BD et al (2006) Documenting domestication: the intersection of genetics and archaeology. Trends Genet 223:139–155CrossRefGoogle Scholar
  92. Zeuner FE (1963) A history of domesticated animals. Hutchinson of London, LondonGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Ecology & Evolutionary BiologyUniversity of CaliforniaLos AngelesUSA
  2. 2.Department of Ecology & Evolutionary BiologyUniversity of CaliforniaIrvineUSA

Personalised recommendations