Skip to main content

Advertisement

Log in

Pseudogenes of rat VDAC1: 16 gene segments in the rat genome show structural similarities with the cDNA encoding rat VDAC1, with 8 slightly expressed in certain tissues

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

BLAST analysis of the rat genome revealed the presence of 16 pseudogenes of isoform 1 of the mitochondrial voltage-dependent anion channel (VDAC1). Based on their structural characterization, it was concluded that these pseudogenes were formed by integration of VDAC1 cDNA into the genome, and subsequent rearrangements/mutations. By RT-PCR analysis using carefully designed primers that could not amplify the cDNA of genuine VDAC1, 8 of these 16 pseudogenes showed slight expression in certain tissues, but none of them seemed to encode a functional protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Blachly-Dyson E, Forte M (2001) VDAC channels. IUBMB Life 52:113–118

    Article  PubMed  CAS  Google Scholar 

  • Cesar Mde C, Wilson JE (2004) All three isoforms of the voltage-dependent anion channel (VDAC1, VDAC2, and VDAC3) are present in mitochondria from bovine, rabbit, and rat brain. Arch Biochem Biophys 422:191–196

    Article  PubMed  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction. Anal Biochem 162:156–159

    Article  PubMed  CAS  Google Scholar 

  • Colombini M (2007) Measurement of VDAC permeability in intact mitochondria and in reconstituted systems. Methods Cell Biol 80:241–260

    Article  PubMed  CAS  Google Scholar 

  • Decker WK, Bowles KR, Schatte EC, Towbin JA, Craigen WJ (1999) Revised fine mapping of the human voltage-dependent anion channel loci by radiation hybrid analysis. Mamm Genome 10:1041–1042

    Article  PubMed  CAS  Google Scholar 

  • Mathupala SP, Ko YH, Pedersen PL (2006) Hexokinase II: cancer’s double-edged sword acting as both facilitator and gatekeeper of malignancy when bound to mitochondria. Oncogene 25:4777–4786

    Article  PubMed  CAS  Google Scholar 

  • Messina A, Oliva M, Rosato C, Huizing M, Ruitenbeek W, van den Heuvel LP, Forte M, Rocchi M, De Pinto V (1999) Mapping of the human voltage-dependent anion channel isoforms 1 and 2 reconsidered. Biochem Biophys Res Commun 255:707–710

    Article  PubMed  CAS  Google Scholar 

  • Mighell AJ, Smith NR, Robinson PA, Markham AF (2000) Vertebrate pseudogenes. FEBS Lett 468:109–114

    Article  PubMed  CAS  Google Scholar 

  • Palmieri F (2004) The mitochondrial transporter family (SLC25): physiological and pathological implications. Pflugers Arch 447:689–709

    Article  PubMed  CAS  Google Scholar 

  • Sampson MJ, Lovell RS, Craigen WJ (1997) The murine voltage-dependent anion channel gene family. Conserved structure and function. J Biol Chem 272:18966–18973

    Article  PubMed  CAS  Google Scholar 

  • Shinohara Y, Sagawa I, Ichihara J, Yamamoto K, Terao K, Terada H (1997) Source of ATP for hexokinase-catalyzed glucose phosphorylation in tumor cells: dependence on the rate of oxidative phosphorylation relative to that of extramitochondrial ATP generation. Biochim Biophys Acta 1319:319–330

    Article  PubMed  CAS  Google Scholar 

  • Shinohara Y, Ishida T, Hino M, Yamazaki N, Baba Y, Terada H (2000) Characterization of porin isoforms expressed in tumor cells. Eur J Biochem 267:6067–6073

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto T, Yamada A, Watanabe M, Yoshimura Y, Yamazaki N, Yoshimura Y, Yamauchi T, Kataoka M, Nagata T, Terada H, Shinohara Y (2006) VDAC1, having a shorter N-terminus than VDAC2 but showing the same migration in an SDS-polyacrylamide gel, is the predominant form expressed in mitochondria of various tissues. J Proteome Res 5:3336–3344

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto T, Yamamoto A, Watanabe M, Matsuo T, Yamazaki N, Kataoka M, Terada H, Shinohara Y (2009) Classification of FABP isoforms and tissues based on quantitative evaluation of transcript levels of these isoforms in various rat tissues. Biotechnol Lett 31:1695–1701

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Gerstein M (2003) The human genome has 49 cytochrome c pseudogenes, including a relic of a primordial gene that still functions in mouse. Gene 312:61–72

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Gerstein M (2004) Large-scale analysis of pseudogenes in the human genome. Curr Opin Genet Dev 14:328–335

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Harrison P, Gerstein M (2002) Identification and analysis of over 2000 ribosomal protein pseudogenes in the human genome. Genome Res 12:1466–1482

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuo Shinohara.

Additional information

Y. Ido and T. Yamamoto contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 87 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ido, Y., Yamamoto, T., Yoshitomi, T. et al. Pseudogenes of rat VDAC1: 16 gene segments in the rat genome show structural similarities with the cDNA encoding rat VDAC1, with 8 slightly expressed in certain tissues. Mamm Genome 23, 286–293 (2012). https://doi.org/10.1007/s00335-011-9375-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-011-9375-x

Keywords

Navigation