Skip to main content

Advertisement

Log in

A novel model and molecular therapy for Z alpha-1 antitrypsin deficiency

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

Animal models that closely resemble human disease can present a challenge. Particularly so in alpha-1 antitrypsin deficiency (α1ATD), as the mouse alpha-1 antitrypsin (α1AT) cluster encodes five highly related genes compared with the one in humans. The mouse PI2 homologue is closest to the α1AT human gene. We have changed the equivalent mouse site that results in the Z variant in man (Glu342Lys) and made both the “M” and “Z” mouse PI2 α1AT proteins. We have tested the ability of a small-molecular-weight compound CG to alleviate polymerisation of these mouse α1AT proteins as it has been shown to reduce aggregates of Z α1AT in man. We found that (1) CG specifically reduces the formation of polymers of recombinant mouse “Z” protein but not “M” protein; (2) whereas there is significantly more α1AT secreted from Chinese Hamster Ovary cells transfected with the mouse “M” α1AT gene than with the “Z” (20.8 ± 3.9 and 6.7 ± 3.6, respectively; P < 0.005), CG increased the α1AT levels secreted from “Z” cells (21.2 ± 0.01) to that of “M” (20.2 ± 0.02). The data support the concept that the murine “Z” gene is a potential model for the study of α1ATD and that mice expressing this gene would be relevant for testing treatments in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Ali R, Perfumo S, della Rocca C, Amicone L, Pozzi L, McCullagh P, Millward-Sadler H, Edwards Y, Povey S, Tripodi M (1998) Evaluation of a transgenic mouse model for alpha-1-antitrypsin (AAT)-related liver disease. Ann Hum Genet 58:305–320

    Article  Google Scholar 

  • Boriello F, Krauter KS (1991) Multiple murine alpha 1-protease inhibitor genes show unusual evolutionary divergence. Proc Natl Acad Sci USA 88:9417–9421

    Article  Google Scholar 

  • Brantly M, Nukiwa T, Crystal RG (1988) Molecular basis of alpha-1-antitrypsin deficiency. Am J Med 24:13–31

    Google Scholar 

  • Burrows JA, Willis LK, Perlmutter DH (2000) Chemical chaperones mediate increased secretion of mutant alpha 1-antitrypsin (alpha 1-AT) Z: a potential pharmacological strategy for prevention of liver injury and emphysema in alpha 1-AT deficiency. Proc Natl Acad Sci USA 97:1796–1801

    Article  PubMed  CAS  Google Scholar 

  • Carlson JA, Rogers BB, Sifer RN, Finegold MJ, Clift SM, DeMayo FJ, Bullock DW, Woo SL (1989) Accumulation of PiZ alpha 1-antitrypsin causes liver damage in transgenic mice. J Clin Invest 83:1183–1190

    Article  PubMed  CAS  Google Scholar 

  • Carrell RW, Jeppsson JO, Laurell CB, Brennan SO, Owen MC, Vaughan L, Boswell DR (1982) Structure and variation of human alpha 1-antitrypsin. Nature 298:329–334

    Article  PubMed  CAS  Google Scholar 

  • Churg A, Wang RD, Xie C, Wright JL (2003) alpha-1-antitrypsin ameliorates cigarette smoke-induced emphysema in the mouse. Am J Respir Crit Care Med 168:199–207

    Article  PubMed  Google Scholar 

  • Cichy J, Potempa J, Travis J (1997) Biosynthesis of alpha1-proteinase inhibitor by human lung-derived epithelial cells. J Biol Chem 272:8250–8255

    Article  PubMed  CAS  Google Scholar 

  • Dirksen A, Piitulainen E, Parr DG, Deng C, Wencker M, Shaker SB, Stockley RA (2009) Exploring the role of CT densitometry: a randomised study of augmentation therapy in alpha1-antitrypsin deficiency. Eur Respir J 33:1345–1353

    Article  PubMed  CAS  Google Scholar 

  • Elliott PR, Lomas DA, Carrell RW, Abrahams JP (1996) Structural insights into serpin-protease complexes reveal the inhibitory mechanism of serpins. Nat Struct Biol 3:676–681

    Article  PubMed  CAS  Google Scholar 

  • Eriksson S (1965) Studies in alpha 1-antitrypsin deficiency. Acta Med Scand Suppl 177:432

    Google Scholar 

  • Eriksson S, Carlson J, Velez R (1986) Risk of cirrhosis and primary liver cancer in alpha 1-antitrypsin deficiency. New Engl J Med 31:736–739

    Article  Google Scholar 

  • Gotzsche PC, Johansen HK (2010) Intravenous alpha-1 antitrypsin augmentation therapy for treating patients with alpha-1 antitrypsin deficiency and lung disease. Cochrane Database Syst Rev 7:CD007851

    Google Scholar 

  • Irving JA, Pike RN, Lesk AM, Whisstock JC (2000) Phylogeny of the serpin superfamily: implications of patterns of amino acid conservation for structure and function. Genome Res 10:1845–1864

    Article  PubMed  CAS  Google Scholar 

  • Janciauskiene S (2001) Conformational properties of serine proteinase inhibitors (serpins) confer multiple pathophysiological roles. Biochim Biophys Acta 1535:221–235

    PubMed  CAS  Google Scholar 

  • Koj A, Regoeczi E, Toews CJ, Leveille R, Gauldie J (1978) Synthesis of antithrombin III and alpha-1-antitrypsin by the perfused rat liver. Biochim Biophys Acta 539:496–504

    Article  PubMed  CAS  Google Scholar 

  • Kushi A, Akiyama K, Noguchi M, Edamura K, Yoshida T, Sasai H (2004) Disruption of the murine alpha1-antitrypsin/PI2 gene. Exp Anim 53:437–443

    Article  PubMed  CAS  Google Scholar 

  • Lomas DA, Evans DL, Finch JT, Carrell RW (1992) The mechanism of Z alpha 1-antitrypsin accumulation in the liver. Nature 18:605–607

    Article  Google Scholar 

  • Mahadeva R, Dafforn TR, Carrell RW, Lomas DA (2002) 6-mer peptide selectively anneals to a pathogenic serpin conformation and blocks polymerization. Implications for the prevention of Z alpha(1)-antitrypsin-related cirrhosis. J Biol Chem 277:6771–6774

    Article  PubMed  CAS  Google Scholar 

  • Mallya M, Phillips RL, Saldanha SA, Gooptu B, Leigh Brown SC, Termine DJ, Shirvani AM, Wu Y, Sifers RN, Abagyan R, Lomas DA (2007) Small molecules block the polymerization of Z alpha1-antitrypsin and increase the clearance of intracellular aggregates. J Med Chem 50:5357–5363

    Article  PubMed  CAS  Google Scholar 

  • Martorana PA, Brand T, Gardi C, van Even P, de Santi MM, Calzoni P, Marcolongo P, Lungarella G (1993) The pallid mouse. A model of genetic alpha 1-antitrypsin deficiency. Lab Invest 68:233–241

    PubMed  CAS  Google Scholar 

  • McNab GL, Ahmad A, Mistry D, Stockley RA (2007) Modification of gene expression and increase in alpha1-antitrypsin (alpha1-AT) secretion after homologous recombination in alpha1-AT-deficient monocytes. Hum Gene Ther 18:1171–1177

    Article  PubMed  CAS  Google Scholar 

  • Mornex JF, Chytil-Weir A, Martinet Y, Courtney M, LeCocq JP, Crystal RG (1986) Expression of the alpha-1-antitrypsin gene in mononuclear phagocytes of normal and alpha-1-antitrypsin-deficient individuals. J Clin Invest 77:1952–1961

    Article  PubMed  CAS  Google Scholar 

  • Paterson T, Moore S (1996) The expression and characterization of five recombinant murine alpha 1-protease inhibitor proteins. Biochem Biophys Res Commun 219:64–69

    Article  PubMed  CAS  Google Scholar 

  • Potempa J, Korzus E, Travis J (1994) The serpin superfamily of proteinase inhibitors: structure, function, and regulation. J Biol Chem 269:15957–15960

    PubMed  CAS  Google Scholar 

  • Ratner M (2010) Cochrane meta-analysis on alpha-1 antitrypsin prompts furor. Nat Biotechnol 28:885–886

    Article  PubMed  CAS  Google Scholar 

  • Senior RM, Tegner H, Kuhn C, Ohlsson K, Starcher BC, Pierce JA (1977) The induction of pulmonary emphysema with human leukocyte elastase. Am Rev Respir Dis 116:469–475

    PubMed  CAS  Google Scholar 

  • Silverman EK (2001) Genetics of chronic obstructive pulmonary disease. Novartis Found Symp 234:45–58

    Article  PubMed  CAS  Google Scholar 

  • Sloan B, Abrams WR, Meranze DR, Kimbel P, Weinbaum G (1981) Emphysema induced in vitro and in vivo in dogs by a purified elastase from homologous leukocytes. Am Rev Respir Dis 124:295–301

    PubMed  CAS  Google Scholar 

  • Snider GL, Lucey EC, Christensen TG, Stone PJ, Calore JD, Catanese A, Franzblau C (1984) Emphysema and bronchial secretory cell metaplasia induced in hamsters by human neutrophil products. Am Rev Respir Dis 129:155–160

    PubMed  CAS  Google Scholar 

  • Stockley RA, Parr DG, Piitulainen E, Stolk J, Stoel BC, Dirksen A (2010) Therapeutic efficacy of α-1 antitrypsin augmentation therapy on the loss of lung tissue: an integrated analysis of 2 randomised clinical trials using computed tomography densitometry. Respir Res 11:136

    Article  PubMed  Google Scholar 

  • van Gent D, Sharp P, Morgan K, Kalsheker N (2003) Serpins: structure, function and molecular evolution. Int J Biochem Cell Biol 35:1536–1547

    Article  PubMed  Google Scholar 

  • Venembre P, Boutten A, Seta N, Dehoux MS, Crestani B, Aubier M, Durand G (1994) Secretion of alpha 1-antitrypsin by alveolar epithelial cells. FEBS Lett 346:171–174

    Article  PubMed  CAS  Google Scholar 

  • Wang D, Wang W, Dawkins P, Paterson T, Kalsheker N, Sallenave JM, McGarry Houghton A (2011) Deletion of serpina1a, a murine α1-antitrypsin ortholog, results in embryonic lethality. Exp Lung Res 37(5):291–300

    Article  PubMed  CAS  Google Scholar 

  • Wilczynska M, Fa M, Karolin J, Ohlsson PI, Johansson LB, Ny T (1997) Structural insights into serpin-protease complexes reveal the inhibitory mechanism of serpins. Nat Struct Biol 4:354–357

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Talecris Biotherapeutics Inc., which have provided the funding for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gillian L. McNab.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McNab, G.L., Dafforn, T.R., Wood, A. et al. A novel model and molecular therapy for Z alpha-1 antitrypsin deficiency. Mamm Genome 23, 241–249 (2012). https://doi.org/10.1007/s00335-011-9370-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-011-9370-2

Keywords