Skip to main content
Log in

Clustered transcripts that escape X inactivation at mouse XqD

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

X Chromosome inactivation (XCI) silences one copy of most X-linked genes in female mammals. Notably, human and mouse differ strikingly in the number and organization of the genes that escape XCI. While on the human X Chromosome (Chr) escape genes are organized in domains, the few known genes that escape inactivation in the mouse appear to be isolated. Here we characterize the gene Cxorf26 and adjacent noncoding transcripts that map to XqD. We assess allelic expression in a nonrandomly X-inactivated cell line and directly demonstrate that 2610029G23Rik (Cxorf26) and its head-to-head neighbor (5530601H04Rik) escape X inactivation, creating a small escape domain. Both genes are robustly expressed from the inactive X Chr at approximately 50 and 30% of the expression levels of the active X, respectively. Additionally, consistent with XCI escape, the first exon of Cxorf26 is embedded within an unmethylated CpG island. To extend these results, we assayed ncRNAs adjacent to three other escape genes, Eif2s3x, Kdm5c, and Ddx3x. By allelic expression, three ncRNAs (D330035k16Rik, D930009k15Rik, and Gm16481) also escape X inactivation in the mouse, consistent with previous studies that reported female-biased expression. Altogether, these results establish that mouse escapees, like their human counterparts, can be clustered. Moreover, the fact that these ncRNAs are not found on the human X raises intriguing questions about potential regulatory roles of rapidly evolving ncRNAs in controlling escape gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson C, Brown C (2005) Epigenetic predisposition to expression of TIMP1 from the human inactive X chromosome. BMC Genet 6:48

    Article  PubMed  Google Scholar 

  • Berletch JB, Yang F, Disteche CM (2010) Escape from X inactivation in mice and humans. Genome Biol 11:213

    PubMed  Google Scholar 

  • Brockdorff N, Ashworth A, Kay GF, McCabe VM, Norris DP, Cooper PJ, Swift S, Rastan S (1992) The product of the mouse Xist gene is a 15 kb inactive X-specific transcript containing no conserved ORF and located in the nucleus. Cell 71:515–526

    Article  PubMed  CAS  Google Scholar 

  • Brown CJ, Hendrich BD, Rupert JL, Lafreniere RG, Xing Y, Lawrence J, Willard HF (1992) The human XIST gene: analysis of a 17 kb inactive X-specific RNA that contains conserved repeats and is highly localized within the nucleus. Cell 71:527–542

    Article  PubMed  CAS  Google Scholar 

  • Carrel L, Willard H (2005) X-inactivation profile reveals extensive variability in X-linked gene expression in females. Nature 434:400–404

    Article  PubMed  CAS  Google Scholar 

  • Carrel L, Hunt P, Willard H (1996) Tissue and lineage-specific variation in inactive X chromosome expression of the murine Smcx gene. Hum Mol Genet 5:1361–1366

    Article  PubMed  CAS  Google Scholar 

  • Carrel L, Park C, Tyekucheva S, Dunn J, Chiaromonte F, Makova K (2006) Genomic environment predicts expression patterns on the human inactive X chromosome. PLoS Genet 2:e151

    Article  PubMed  Google Scholar 

  • Chaumeil J, Le Baccon P, Wutz A, Heard E (2006) A novel role for Xist RNA in the formation of a repressive nuclear compartment into which genes are recruited when silenced. Genes Dev 20:2223–2237

    Article  PubMed  CAS  Google Scholar 

  • Chow JC, Ciaudo C, Fazzari MJ, Mise N, Servant N, Glass JL, Attreed M, Avner P, Wutz A, Barillot E, Greally JM, Voinnet O, Heard E (2010) LINE-1 activity in facultative heterochromatin formation during X chromosome inactivation. Cell 141:956–969

    Article  PubMed  CAS  Google Scholar 

  • Chureau C, Chantalat S, Romito A, Galvani A, Duret L, Avner P, Rougeulle C (2011) Ftx is a non-coding RNA which affects Xist expression and chromatin structure within the X-inactivation center region. Hum Mol Genet 20:705–718

    Article  PubMed  CAS  Google Scholar 

  • Ciavatta D, Kalantry S, Magnuson T, Smithies O (2006) A DNA insulator prevents repression of a targeted X-linked transgene but not its random or imprinted X inactivation. Proc Natl Acad Sci USA 103:9958–9963

    Article  PubMed  CAS  Google Scholar 

  • Clemson CM, McNeil JA, Willard HF, Lawrence JB (1996) XIST RNA paints the inactive X chromosome at interphase: evidence for a novel RNA involved in nuclear/chromosome structure. J Cell Biol 132:259–275

    Article  PubMed  CAS  Google Scholar 

  • Cordaux R, Batzer MA (2009) The impact of retrotransposons on human genome evolution. Nat Rev Genet 10:691–703

    Article  PubMed  CAS  Google Scholar 

  • Disteche C (1995) Escape from X inactivation in human and mouse. Trends Genet 11:17–22

    Article  PubMed  CAS  Google Scholar 

  • Disteche C (1999) Escapees on the X chromosome. Proc Natl Acad Sci USA 96:14180–14182

    Article  PubMed  CAS  Google Scholar 

  • Disteche C, Filippova G, Tsuchiya K (2002) Escape from X inactivation. Cytogenet Genome Res 99:36–43

    Article  PubMed  CAS  Google Scholar 

  • Duret L, Chureau C, Samain S, Weissenbach J, Avner P (2006) The Xist RNA gene evolved in eutherians by pseudogenization of a protein-coding gene. Science 312:1653–1655

    Article  PubMed  CAS  Google Scholar 

  • Ehrmann I, Ellis P, Mazeyrat S, Duthie S, Brockdorff N, Mattei M, Gavin M, Affara N, Brown G, Simpson E, Mitchell M, Scott D (1998) Characterization of genes encoding translation initiation factor eIF-2gamma in mouse and human: sex chromosome localization, escape from X-inactivation and evolution. Hum Mol Genet 7:1725–1737

    Article  PubMed  CAS  Google Scholar 

  • Elisaphenko EA, Kolesnikov NN, Shevchenko AI, Rogozin IB, Nesterova TB, Brockdorff N, Zakian SM (2008) A dual origin of the Xist gene from a protein-coding gene and a set of transposable elements. PLoS One 3:e2521

    Article  PubMed  Google Scholar 

  • Faulkner GJ, Kimura Y, Daub CO, Wani S, Plessy C, Irvine KM, Schroder K, Cloonan N, Steptoe AL, Lassmann T, Waki K, Hornig N, Arakawa T, Takahashi H, Kawai J, Forrest ARR, Suzuki H, Hayashizaki Y, Hume DA, Orlando V, Grimmond SM, Carninci P (2009) The regulated retrotransposon transcriptome of mammalian cells. Nat Genet 41:563–571

    Article  PubMed  CAS  Google Scholar 

  • Filippova G, Cheng M, Moore J, Truong J, Hu Y, Nguyen D, Tsuchiya K, Disteche C (2005) Boundaries between chromosomal domains of X inactivation and escape bind CTCF and lack CpG methylation during early development. Dev Cell 8:31–42

    Article  PubMed  CAS  Google Scholar 

  • Gartler SM, Riggs AD (1983) Mammalian X-chromosome inactivation. Annu Rev Genet 17:155–190

    Article  PubMed  CAS  Google Scholar 

  • Goto Y, Kimura H (2009) Inactive X chromosome-specific histone H3 modifications and CpG hypomethylation flank a chromatin boundary between an X-inactivated and an escape gene. Nucleic Acids Res 37:7416–7428

    Article  PubMed  CAS  Google Scholar 

  • Greenfield A, Carrel L, Pennisi D, Philippe C, Quaderi N, Siggers P, Steiner K, Tam P, Monaco A, Willard H, Koopman P (1998) The UTX gene escapes X inactivation in mice and humans. Hum Mol Genet 7:737–742

    Article  PubMed  CAS  Google Scholar 

  • Jegalian K, Page DC (1998) A proposed path by which genes common to mammalian X and Y chromosomes evolve to become X inactivated. Nature 394:776–780

    Article  PubMed  CAS  Google Scholar 

  • Kalitsis P, Saffery R (2009) Inherent promoter bidirectionality facilitates maintenance of sequence integrity and transcription of parasitic DNA in mammalian genomes. BMC Genomics 10:498

    Article  PubMed  Google Scholar 

  • Koerner MV, Pauler FM, Huang R, Barlow DP (2009) The function of non-coding RNAs in genomic imprinting. Development 136:1771–1783

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Davidow LS, Warshawsky D (1999) Tsix, a gene antisense to Xist at the X-inactivation centre. Nat Genet 21:400–404

    Article  PubMed  CAS  Google Scholar 

  • Li N, Carrel L (2008) Escape from X chromosome inactivation is an intrinsic property of the Jarid1c locus. Proc Natl Acad Sci USA 105:17055–17060

    Article  PubMed  CAS  Google Scholar 

  • Lopes A, Burgoyne P, Ojarikre A, Bauer J, Sargent C, Amorim A, Affara N (2010) Transcriptional changes in response to X chromosome dosage in the mouse: implications for X inactivation and the molecular basis of Turner Syndrome. BMC Genomics 11:82

    Article  PubMed  Google Scholar 

  • Lyon M (1998) X-chromosome inactivation: a repeat hypothesis. Cytogenet Cell Genet 80:133–137

    Article  PubMed  CAS  Google Scholar 

  • Marks H, Chow J, Denissov S, Françoijs K, Brockdorff N, Heard E, Stunnenberg H (2009) High-resolution analysis of epigenetic changes associated with X inactivation. Genome Res 19:1361–1373

    Article  PubMed  CAS  Google Scholar 

  • Mercer TR, Dinger ME, Mattick JS (2009) Long non-coding RNAs: insights into functions. Nat Rev Genet 10:155–159

    Article  PubMed  CAS  Google Scholar 

  • Payer B, Lee J (2008) X chromosome dosage compensation: how mammals keep the balance. Annu Rev Genet 42:733–772

    Article  PubMed  CAS  Google Scholar 

  • Penny GD, Kay GF, Sheardown SA, Rastan S, Brockdorff N (1996) Requirement for Xist in X chromosome inactivation. Nature 379:131–137

    Article  PubMed  CAS  Google Scholar 

  • Polak P, Domany E (2006) Alu elements contain many binding sites for transcription factors and may play a role in regulation of developmental processes. BMC Genomics 7:133

    Article  PubMed  Google Scholar 

  • Reinius B, Shi C, Hengshuo L, Sandhu K, Radomska K, Rosen G, Lu L, Kullander K, Williams R, Jazin E (2010) Female-biased expression of long non-coding RNAs in domains that escape X-inactivation in mouse. BMC Genomics 11:614

    Article  PubMed  Google Scholar 

  • Sheardown S, Norris D, Fisher A, Brockdorff N (1996) The mouse Smcx gene exhibits developmental and tissue specific variation in degree of escape from X inactivation. Hum Mol Genet 5:1355–1360

    Article  PubMed  CAS  Google Scholar 

  • Speek M (2001) Antisense promoter of human L1 retrotransposon drives transcription of adjacent cellular genes. Mol Cell Biol 21:1973–1985

    Article  PubMed  CAS  Google Scholar 

  • Talebizadeh Z, Simon S, Butler M (2006) X chromosome gene expression in human tissues: male and female comparisons. Genomics 88:675–681

    Article  PubMed  CAS  Google Scholar 

  • Trinklein N, Aldred S, Hartman S, Schroeder D, Otillar R, Myers R (2004) An abundance of bidirectional promoters in the human genome. Genome Res 14:62–66

    Article  PubMed  CAS  Google Scholar 

  • Tsuchiya K, Greally J, Yi Y, Noel K, Truong J, Disteche C (2004) Comparative sequence and X-inactivation analyses of a domain of escape in human xp11.2 and the conserved segment in mouse. Genome Res 14:1275–1284

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Willard H, Mukherjee S, Furey T (2006) Evidence of influence of genomic DNA sequence on human X chromosome inactivation. PLoS Comput Biol 2:e113

    Article  PubMed  Google Scholar 

  • Waters PD, Dobigny G, Waddell PJ, Robinson TJ (2007) Evolutionary history of LINE-1 in the major clades of placental mammals. PLoS One 2:e158

    Article  PubMed  Google Scholar 

  • Yamada Y, Watanabe H, Miura F, Soejima H, Uchiyama M, Iwasaka T, Mukai T, Sakaki Y, Ito T (2004) A comprehensive analysis of allelic methylation status of CpG islands on human chromosome 21q. Genome Res 14:247–266

    Article  PubMed  CAS  Google Scholar 

  • Yang F, Babak T, Shendure J, Disteche CM (2010) Global survey of escape from X inactivation by RNA-sequencing in mouse. Genome Res 20:614–622

    Article  PubMed  CAS  Google Scholar 

  • Yen ZC, Meyer IM, Karalic S, Brown CJ (2007) A cross-species comparison of X-chromosome inactivation in Eutheria. Genomics 90:453–463

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Isabel Castro for kindly providing the female mouse RNAs. IPATIMUP is an Associate Laboratory of the Portuguese Ministry of Science, Technology and Higher Education and is partially supported by FCT, the Portuguese Foundation for Science and Technology. AML is the recipient of a postdoctoral fellowship from FCT (FRH/BPD/26702/2006). LC acknowledges support from the NIH (HD056452).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alexandra M. Lopes or Laura Carrel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 2 (PDF 1549 kb)

Supplementary material 1 (XLS 47 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lopes, A.M., Arnold-Croop, S.E., Amorim, A. et al. Clustered transcripts that escape X inactivation at mouse XqD. Mamm Genome 22, 572–582 (2011). https://doi.org/10.1007/s00335-011-9350-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-011-9350-6

Keywords

Navigation