Skip to main content
Log in

The influence of sex and estrous cycle on QTL for emotionality and ethanol consumption

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

The inbred rat strains Lewis (LEW) and Spontaneously Hypertensive Rats (SHR) differ with respect to several emotionality- and ethanol intake-related behaviors, one of which (inner locomotion in the open field; OF) is strongly influenced by a locus (Anxrr16) on chromosome (Chr) 4. We aimed to further investigate the influence of Chr 4 on these behaviors and to evaluate the role of the estrous cycle in QTL expression. LEW females and SHR males were intercrossed to produce F1 and F2 rats (96–97/sex), which were then tested in the OF, light–dark box (LDB), forced swimming test (FST), and an ethanol consumption procedure (ECP). In addition, another group of 96 F2 females were tested in the OF and LDB according to their estrous cycle phase. All animals were genotyped for microsatellite markers located on Chr 4 and two QTL analyses were performed. A factor analysis of the F2 population produced five factors reflecting different behavioral dimensions. QTL analysis revealed five significant loci in males, some of which with pleiotropic effects on behaviors measured in the OF, LDB, and ECP. The second QTL analysis revealed two significant loci in females in diestrous–proestrous and one in females in estrous–metestrous that influence behaviors in the OF and LDB. Results revealed that Anxrr16 and four other new QTL influence emotionality- and ethanol-related behaviors in male rats, whereas Anxrr16 attained suggestive levels only in females in diestrous–proestrous, which raises the need for taking into account factors related to the sex and estrous cycle in behavioral QTL analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Angrini M, Leslie JC, Shephard RA (1998) Effects of propanolol, buspirone, pCPA, reserpine, and chlorodiazepoxide on open field behavior. Pharmacol Biochem Behav 59:387–397

    Article  PubMed  CAS  Google Scholar 

  • Archer J (1973) Tests for emotionality in rats and mice: a review. Anim Behav 21:205–235

    Article  PubMed  CAS  Google Scholar 

  • Bell RL, Rodd ZA, Sable HJ, Schultz JA, Hsu CC et al (2006a) Daily patterns of ethanol drinking in peri-adolescent and adult alcohol-preferring (P) rats. Pharmacol Biochem Behav 83:35–46

    Article  PubMed  CAS  Google Scholar 

  • Bell RL, Rodd ZA, Lumeng L, Murphy JM, Mcbride WJ (2006b) The alcohol-preferring P rat and animal models of excessive alcohol drinking. Addict Biol 11:270–288

    Article  PubMed  Google Scholar 

  • Berton O, Aguerre S, Sarrieau A, Mormède P, Chaouloff F (1998) Differential effects of social stress on central serotonergic activity and emotional reactivity in Lewis and spontaneously hypertensive rats. Neuroscience 82:147–159

    Article  PubMed  CAS  Google Scholar 

  • Bice P, Foroud T, Bo R, Castelluccio P, Lumeng L, Li TK, Carr LG (1998) Genomic screen for QTLs underlying alcohol consumption in the P and NP rat lines. Mamm Genome 9:949–955

    Article  PubMed  CAS  Google Scholar 

  • Cailhol S, Mormède P (2002) Conditioned taste aversion and alcohol drinking: strain and gender differences. J Stud Alcohol 63:91–99

    PubMed  Google Scholar 

  • Caldarone B, Saavedra C, Tartaglia K, Wehner JM, Dudek BC, Flaherty L (1997) Quantitative trait loci analysis affecting contextual conditioning in mice. Nat Genet 17:335–337

    Article  PubMed  CAS  Google Scholar 

  • Carr LG, Foroud T, Bice P, Gobbett T, Ivashina J, Edenberg H, Lumeng L, Li TK (1998) A quantitative trait locus for alcohol consumption in selectively bred rat lines. Alcohol Clin Exp Res 22:884–887

    Article  PubMed  CAS  Google Scholar 

  • Caspi A, Sugden K, Moffitt TE, Taylor A, Craig IW, Harrington H et al (2003) Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science 301:386–389

    Article  PubMed  CAS  Google Scholar 

  • Chesler EJ, Wilson SG, Lariviere WR, Rodriguez-Zas SL, Mogil JS (2002) Identification and ranking of genetic and laboratory environment factors influencing a behavioral trait, thermal nociception, via computational analysis of a large data archive. Neurosci Biobehav Rev 26:907–923

    Article  PubMed  Google Scholar 

  • Chiavegatto S, Izidio GS, Mendes-Lana A, Aneas I, Freitas TA, Torrão AS, Conceição IM, Britto LR, Ramos A (2009) Expression of alpha-synuclein is increased in the hippocampus of rats with high levels of innate anxiety. Mol Psychiatry 14:894–905

    Article  PubMed  CAS  Google Scholar 

  • Chikahisa S, Sano A, Kitaoka K, Miyamoto K, Sei H (2007) Anxiolytic effect of music depends on ovarian steroid in female mice. Behav Brain Res 179:50–59

    Article  PubMed  CAS  Google Scholar 

  • Consortium STAR (2008) SNP and haplotype mapping for genetic analysis in the rat. Nature Genet 40:560–566

    Article  Google Scholar 

  • Contreras CM, Martinez-Mota L, Saavedra M (1998) Desipramine restricts estral cycle oscillations in swimming. Prog Neuropsychopharmacol Biol Psychiatry 22:1121–1128

    Article  PubMed  CAS  Google Scholar 

  • Crabbe JC, Wahlsten D, Dudek BC (1999) Genetics of mouse behavior: interactions with laboratory environment. Science 284:1670–1672

    Article  PubMed  CAS  Google Scholar 

  • Crusio WE (2004) A note on the effect of within-strain sample sizes on QTL mapping in recombinant inbred strain studies. Genes Brain Behav 3:249–251

    Article  PubMed  CAS  Google Scholar 

  • Cruz AP, Frei F, Graeff FG (1994) Ethopharmacological analysis of rat behavior on the elevated plus-maze. Pharmacol Biochem Behav 49:171–176

    Article  PubMed  CAS  Google Scholar 

  • Da Silva GE, Vendruscolo LF, Takahashi RN (2005) Effects of ethanol on locomotor and anxiety-like behaviors and the acquisition of ethanol intake in Lewis and spontaneously hypertensive rats. Life Sci 77:693–706

    Article  PubMed  CAS  Google Scholar 

  • Díaz-Véliz G, Alarcón T, Espinoza C, Dussaubat N, Mora S (1997) Ketanserin and anxiety levels: influence of gender, estrous cycle, ovariectomy and ovarian hormones in female rats. Pharmacol Biochem Behav 58:637–642

    Article  PubMed  Google Scholar 

  • Eisener-Dorman AF, Grabowski-Boase L, Steffy BM, Wiltshire T, Tarantino LM (2010) Quantitative trait locus and haplotype mapping in closely related inbred strains identifies a locus for open field behavior. Mamm Genome 21:231–246

    Article  PubMed  Google Scholar 

  • Fernandez-Teruel A, Driscoll P, Gil L, Aguilar R, Tobena A, Escorihuela RM (2002) Enduring effects of environmental enrichment on novelty seeking, saccharin and ethanol intake in two rat lines (RHA/Verh and RLA/Verh) differing in incentive-seeking behavior. Pharmacol Biochem Behav 73:225–231

    Article  PubMed  CAS  Google Scholar 

  • File SE (1991) The biological basis of anxiety. In: Meltzer HY, Nerozzi D (eds) Current practices and future developments in the pharmacotherapy of mental disorders. Elsevier Science, Amsterdam, pp 159–165

    Google Scholar 

  • Flint J (2003) Analysis of quantitative trait loci that influence animal behavior. J Neurobiol 54:46–77

    Article  PubMed  CAS  Google Scholar 

  • Flint J (2004) The genetic basis of neuroticism. Neurosci Biobehav Rev 28:307–316

    Article  PubMed  CAS  Google Scholar 

  • Flint J, Corley R, Defries JC, Fulker DW, Gray JA, Miller S, Collins AC (1995) A simple genetic basis for a complex psychological trait in laboratory mice. Science 269:1432–1435

    Article  PubMed  CAS  Google Scholar 

  • Flint J, Valdar W, Shifman S, Mott R (2005) Strategies for mapping and cloning quantitative trait genes in rodents. Nat Rev Genet 6:271–286

    Article  PubMed  CAS  Google Scholar 

  • Fraser LM, Brown RE, Hussin A, Fontana M, Whittaker A, O’Leary TP et al (2010) Measuring anxiety- and locomotion-related behaviours in mice: a new way of using old tests. Psychopharmacology (Berl) 211:99–112

    Article  CAS  Google Scholar 

  • Frye CA, Petralia SM, Rhodes ME (2000) Estrous cycle and sex differences in performance on anxiety tasks coincide with increases in hippocampal progesterone and 3α, 5α-THP. Pharmacol Biochem Behav 67:587–596

    Article  PubMed  CAS  Google Scholar 

  • Frye CA, Walf AA, Rhodes ME, Harney JP (2004) Progesterone enhances motor, anxiolytic, analgesic, and antidepressive behavior of wild-type mice, but not those deficient in type 1 5 alpha-reductase. Brain Res 1004:116–124

    Article  PubMed  CAS  Google Scholar 

  • Gordon JA, Hen R (2004) Genetic approaches to the study of anxiety. Annu Rev Neurosci 27:193–222

    Article  PubMed  CAS  Google Scholar 

  • Gorwood P (2004) Generalized anxiety disorder and major depressive disorder comorbidity: an example of genetic pleiotropy? Eur Psychiatry 19:27–33

    Article  PubMed  CAS  Google Scholar 

  • Grove KL, Fried SK, Greenberg AS, Xiao XQ, Clegg DJ (2010) A microarray analysis of sexual dimorphism of adipose tissues in high-fat-diet-induced obese mice. Int J Obes (Lond) 34:989–1000

    Article  CAS  Google Scholar 

  • Hall CS (1934) Emotional behavior in the rat. Defecation and urination as measures of individual differences in the emotionality. J Comp Psychol 18:385–403

    Article  Google Scholar 

  • Hameister TM, Izidio GS, Valiati VH, Ramos A (2008) Association of a locus on rat chromosome 4 with anxiety-related behaviors in two selectively bred rat lines. Genet Mol Biol 31:843–849

    Article  Google Scholar 

  • Hebel R, Stromberg MW (1986) Anatomy and embryology of the laboratory rat. BioMed Verlag Wörthsee, London

    Google Scholar 

  • Henderson ND, Turri MG, Defries JC, Flint J (2004) QTL analysis of multiple behavioral measures of anxiety in mice. Behav Genet 34:267–293

    Article  PubMed  Google Scholar 

  • Hinojosa FR, Spricigo L Jr, Izidio GS, Bruske GR, Lopes DM, Ramos A (2006) Evaluation of two genetic animal models in behavioural tests of anxiety and depression. Behav Brain Res 168:127–136

    Article  PubMed  Google Scholar 

  • Hitzemann R, Edmunds S, Wu W, Malmanger B, Walter N, Belknap J et al (2009) Detection of reciprocal quantitative trait loci for acute ethanol withdrawal and ethanol consumption in heterogeneous stock mice. Psychopharmacology 203:713–722

    Article  PubMed  CAS  Google Scholar 

  • Izídio GS, Lopes DM, Spricigo L Jr, Ramos A (2005) Common variations in the pretest environment influence genotypic comparisons in models of anxiety. Genes Brain Behav 4:412–419

    Article  PubMed  Google Scholar 

  • Kovács P, Voigt B, Klöting I (1997) Alleles of the spontaneously hypertensive rat decrease blood pressure at loci on chromosomes 4 and 13. Biochem Biophys Res Commun 238:586–589

    Article  PubMed  Google Scholar 

  • Liang T, Spence J, Liu L, Strother WN, Chang HW, Ellison JA et al (2003) Alpha Synuclein maps to a quantitative trait locus for alcohol preference and is differentially expressed in alcohol-preferring and nonpreferring rats. Proc Natl Acad Sci USA 100:4690–4695

    Article  PubMed  CAS  Google Scholar 

  • Llamas B, Contesse V, Guyonnet-Duperat V, Vaudry H, Mormède P, Moisan MP (2005) QTL mapping for traits associated with stress neuroendocrine reactivity in rats. Mamm Genome 16:505–515

    Article  PubMed  CAS  Google Scholar 

  • Maguire JL, Stell BM, Rafizadeh M, Mody I (2005) Ovarian cycle-linked changes in GABA-A receptors mediating tonic inhibition alter seizure susceptibility and anxiety. Nat Neurosci 8:797–804

    Article  PubMed  CAS  Google Scholar 

  • Marinelli PW, Quirion R, Gianoulakis C (2003) Estradiol valerate and alcohol intake: a comparison between Wistar and Lewis rats and the putative role of endorphins. Behav Brain Res 139:59–67

    Article  PubMed  CAS  Google Scholar 

  • Meziane H, Ouagazzal AM, Aubert L, Wietrzych M, Krezel W (2007) Estrous cycle effects on behavior of C57BL/6 J and BALB/cByJ female mice: implications for phenotyping strategies. Genes Brain Behav 6:192–200

    Article  PubMed  CAS  Google Scholar 

  • Mogil JS, Richards SP, O’Toole LA, Helms ML, Mitchell SR, Kest B et al (1997) Identification of a sex-specific quantitative trait locus mediating nonopioid stress-induced analgesia in female mice. J Neurosci 17:7995–8002

    PubMed  CAS  Google Scholar 

  • Moisan MP, Ramos A (2010) Rat genomics applied to psychiatric research. Methods Mol Biol 597:357–388

    Article  PubMed  Google Scholar 

  • Moisan MP, Courvoisier H, Bihoreau MT, Gauguier D, Hendley ED, Lathrop M, James MR, Mormède P (1996) A major quantitative trait locus influences hyperactivity in the WKHA rat. Nat Genet 14:471–473

    Article  PubMed  CAS  Google Scholar 

  • Moisan MP, Llamas B, Cook MN, Mormède P (2003) Further dissection of a genomic locus associated with behavioral activity in the Wistar–Kyoto hyperactive rat, an animal model of hyperkinesis. Mol Psychiatry 8:348–352

    Article  PubMed  CAS  Google Scholar 

  • Mora S, Dussaubat N, Diaz-Veliz G (1996) Effects of the estrous cycle and ovarian hormones on behavioral indices of anxiety in female rats. Psychoneuroendocrinology 21:609–620

    Article  PubMed  CAS  Google Scholar 

  • Mormède P, Moneva E, Bruneval C, Chaouloff F, Moisan MP (2002) Marker-assisted selection of a neuro-behavioural trait related to behavioural inhibition in the SHR strain, an animal model of ADHD. Genes Brain Behav 1:111–116

    Article  PubMed  Google Scholar 

  • Olsson IA, Nevison CM, Patterson-Kane EG, Sherwin CM, Van De Weerd HA, Wurbel H (2003) Understanding behaviour: the relevance of ethological approaches in laboratory animal science. Appl Anim Behav Sci 81:245–264

    Article  Google Scholar 

  • Palanza P, Gioiosa L, Parmigiani S (2001) Social stress in mice: gender differences and effects of estrous cycle and social dominance. Physiol Behav 73:411–420

    Article  PubMed  CAS  Google Scholar 

  • Pandey SC, Zhang H, Roy A, Xu T (2005) Deficits in amygdaloid camp-responsive element-binding protein signaling play a role in genetic predisposition to anxiety and alcoholism. J Clin Invest 115:2762–2773

    Article  PubMed  CAS  Google Scholar 

  • Paulus MP, Geyer MA (1993) Three independent factors characterize spontaneous rat motor activity. Behav Brain Res 53:11–20

    Article  PubMed  CAS  Google Scholar 

  • Potenza MN, Brodkin ES, Joe B, Luo X, Remmers EF, Wilder RL et al (2004) Genomic regions controlling corticosterone levels in rats. Biol Psychiatry 55:634–641

    Article  PubMed  CAS  Google Scholar 

  • Pravenec M, Churchill PC, Churchill MC, Viklicky O, Kazdova L, Aitman TJ et al (2008) Identification of renal Cd36 as a determinant of blood pressure and risk for hypertension. Nat Genet 40:952–954

    Article  PubMed  CAS  Google Scholar 

  • Prut L, Belzung C (2003) The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. Eur J Pharmacol 463:3–33

    Article  PubMed  CAS  Google Scholar 

  • Ramos A (2008) Animal models of anxiety: do I need multiple tests? Trends Pharmacol Sci 29:493–498

    Article  PubMed  CAS  Google Scholar 

  • Ramos A, Mormède P (1998) Stress and emotionality: a multidimensional and genetic approach. Neurosci Biobehav Rev 22:33–57

    Article  PubMed  CAS  Google Scholar 

  • Ramos A, Mormède P (2006) Genetic analysis of emotional behaviors using animal models. In: Byron CJ, Pierre M (eds) Neurobehavioral genetics: methods and applications, 2nd edn. CRC Press, Boca Raton, FL, pp 291–306

    Chapter  Google Scholar 

  • Ramos A, Moisan MP, Chaouloff F, Mormède C, Mormède P (1999) Identification of female-specific QTLs affecting an emotionality-related behavior in rats. Mol Psychiatry 4:453–462

    Article  PubMed  CAS  Google Scholar 

  • Ramos A, Kangerski AL, Basso PF, Da Silva Santos JE, Assreuy J, Vendruscolo LF et al (2002) Evaluation of Lewis and SHR rat strains as a genetic model for the study of anxiety and pain. Behav Brain Res 129:113–123

    Article  PubMed  Google Scholar 

  • Ramos A, Correia EC, Izidio GS, Bruske GR (2003) Genetic selection of two new rat lines displaying different levels of anxiety-related behaviors. Behav Genet 33:657–668

    Article  PubMed  Google Scholar 

  • Rat Genome Sequencing Project Consortium (2004) Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature 428(6982):493–521

    Article  Google Scholar 

  • Rodgers RJ, Johnson NJ (1998) Behaviorally selective effects of neuroactive steroids on plus-maze anxiety in mice. Pharmacol Biochem Behav 59:221–232

    Article  PubMed  CAS  Google Scholar 

  • Silva GJ, Pereira AC, Krieger EM, Krieger JE (2007) Genetic mapping of a new heart rate QTL on chromosome 8 of spontaneously hypertensive rats. BMC Med Genet 8:17

    Article  PubMed  Google Scholar 

  • Singer JB, Hill AE, Nadeau JH, Lander ES (2005) Mapping quantitative trait loci for anxiety in chromosome substitution strains of mice. Genetics 169:855–862

    Article  PubMed  CAS  Google Scholar 

  • Smoller JW, Paulus MP, Fagerness JA, Purcell S, Yamaki LH, Hirshfeld-Becker D et al (2008) Influence of Rgs2 on anxiety-related temperament, personality, and brain function. Arch Gen Psychiatry 65:298–308

    Article  PubMed  CAS  Google Scholar 

  • Tabakoff B, Saba L, Kechris K, Hu W, Bhave SV, Finn DA et al (2008) The genomic determinants of alcohol preference in mice. Mamm Genome 19:352–365

    Article  PubMed  CAS  Google Scholar 

  • Takahashi A, Nishi A, Ishii A, Shiroishi T, Koide T (2008) Systematic analysis of emotionality in consomic mouse strains established from C57BL/6 J and wild-derived MSM/Ms. Genes Brain Behav 7:849–858

    Article  PubMed  CAS  Google Scholar 

  • Terenina-Rigaldie E, Jones BC, Mormède P (2003a) Pleiotropic effect of a locus on chromosome 4 influencing alcohol drinking and emotional reactivity in rats. Genes Brain Behav 2:125–131

    Article  PubMed  CAS  Google Scholar 

  • Terenina-Rigaldie E, Moisan MP, Colas A, Beaugé F, Shah KV, Jones BC et al (2003b) Genetics of behaviour: phenotypic and molecular study of rats derived from high- and low-alcohol consuming lines. Pharmacogenetics 13:543–554

    Article  PubMed  Google Scholar 

  • Tomida S, Mamiya T, Sakamaki H, Miura M, Aosaki T, Masuda M et al (2009) Usp46 is a quantitative trait gene regulating mouse immobile behavior in the tail suspension and forced swimming tests. Nat Genet 41:688–695

    Article  PubMed  CAS  Google Scholar 

  • Turri MG, Datta SR, Defries J, Henderson ND, Flint J (2001a) QTL analysis identifies multiple behavioral dimensions in ethological tests of anxiety in laboratory mice. Curr Biol 11:725–734

    Article  PubMed  CAS  Google Scholar 

  • Turri MG, Henderson ND, Defries J, Flint J (2001b) Quantitative trait locus mapping in laboratory mice derived from a replicated selection experiment for open-field activity. Genetics 158:1217–1226

    PubMed  CAS  Google Scholar 

  • Vadasz C, Saito M, Gyetvai BM, Oros M, Szakall I, Kovacs KM et al (2007) Mapping of QTLs for oral alcohol self-administration in B6.C and B6.I quasi-congenic RQI strains. Neurochem Res 32:1099–1112

    Article  PubMed  CAS  Google Scholar 

  • Van Der Staay FJ, Steckler T (2002) The fallacy of behavioral phenotyping without standardization. Genes Brain Behav 1:9–13

    Article  PubMed  Google Scholar 

  • Vendruscolo LF, Terenina-Rigaldie E, Raba F, Ramos A, Takahashi RN, Mormede P (2006a) Evidence for a female-specific effect of a chromosome 4 locus on anxiety-related behaviors and ethanol drinking in rats. Genes Brain Behav 5:441–450

    Article  PubMed  CAS  Google Scholar 

  • Vendruscolo LF, Vendruscolo JC, Terenina-Rigaldie E, Raba F, Ramos A, Takahashi RN et al (2006b) Genetic influences on behavioral and neuroendocrine responses to predator-odor stress in rats. Neurosci Lett 1:89–94

    Article  Google Scholar 

  • Vendruscolo LF, Vendruscolo JC, Terenina E, Ramos A, Takahashi RN, Mormede P (2009) Marker-assisted dissection of genetic influences on motor and neuroendocrine sensitization to cocaine in rats. Genes Brain Behav 8:267–274

    Article  PubMed  CAS  Google Scholar 

  • Wahlsten D, Metten P, Phillips TJ, Boehm SL II, Burkhart-Kasch S, Dorow J et al (2003) Different data from different labs: lessons from studies of gene-environment interaction. J Neurobiol 54:283–311

    Article  PubMed  Google Scholar 

  • Wald C, Wu C (2010) Of mice and women: the bias in animal models. Science 26:1571–1572

    Article  Google Scholar 

  • Wehner JM, Radcliffe RA, Rosmann ST, Christensen SC, Rasmussen DL, Fulker DW et al (1997) Quantitative trait locus analysis of contextual fear conditioning in mice. Nat Genet 17:331–334

    Article  PubMed  CAS  Google Scholar 

  • Würbel H (2002) Behavioral phenotyping enhanced beyond (environmental) standardization. Genes Brain Behav 1:3–8

    Article  PubMed  Google Scholar 

  • Yalcin B, Willis-Owen SA, Fullerton J, Meesaq A, Deacon RM, Rawlins JN et al (2004) Genetic dissection of a behavioral quantitative trait locus shows that Rgs2 modulates anxiety in mice. Nat Genet 36:1197–1202

    Article  PubMed  CAS  Google Scholar 

  • Zucker I, Beery AK (2010) Males still dominate animal studies. Nature 46:690

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from Pronex 427/2003 and from Fapesc/CNPq. A. Ramos had a fellowship from CNPq; G. S. Izídio, E. Pereira, L. C. Oliveira, and L. F. G. Oliveira had scholarships from CNPq; T. D. Wehrmeister had a scholarship from Capes. The authors also thank A. P. Costa, F. B. Oliveira, and N. B. Mello for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geison S. Izídio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Izídio, G.S., Oliveira, L.C., Oliveira, L.F.G. et al. The influence of sex and estrous cycle on QTL for emotionality and ethanol consumption. Mamm Genome 22, 329–340 (2011). https://doi.org/10.1007/s00335-011-9327-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-011-9327-5

Keywords

Navigation