Skip to main content
Log in

Uncovering the transcriptional circuitry in skeletal muscle regeneration

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

Skeletal muscle has a remarkable ability to regenerate after repeated and complete destruction of the tissue. The healing phases for an injured muscle undergo an activation program controlled by a dynamically inducible transcriptional regulatory network. Mapping a complex mammalian transcriptional network is confronted by significant challenges and requires the integration of multiple experimental data types. In this work we present a system approach to describe the transcriptional circuitry during skeletal muscle regeneration using time-course expression data and motif scanning information. Time-lagged correlation analysis was utilized to evaluate the transcription factor (TF) → target associations. Our analysis identified six TFs that potentially play a central role throughout the regeneration process. Four of them have previously been described to be important for muscle regeneration and differentiation. The remaining two TFs are identified as novel regulators that may have a role in the regeneration process. We hope that our work may provide useful clues to help accelerate the recovery process in injured skeletal muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agrawal A, Mittal A (2005) A dynamic time-lagged correlation based method to learn multi-time delay gene networks. Enformatika 9:167–174

    Google Scholar 

  • Anderson JE (1998) Murray L. Barr award lecture. Studies of the dynamics of skeletal muscle regeneration: the mouse came back. Biochem Cell Biol 76:13–26

    Article  PubMed  CAS  Google Scholar 

  • Banerjee A, Gerondakis S (2007) Coordinating TLR-activated signaling pathways in cells of the immune system. Immunol Cell Biol 85:420–424

    Article  PubMed  CAS  Google Scholar 

  • Barabasi AL, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5:101–113

    Article  PubMed  CAS  Google Scholar 

  • Barash IA, Mathew L, Ryan AF, Chen J, Lieber RL (2004) Rapid muscle-specific gene expression changes after a single bout of eccentric contractions in the mouse. Am J Physiol Cell Physiol 286:C355–C364

    Article  PubMed  CAS  Google Scholar 

  • Barrio M, Burrage K, Leier A, Tian T (2006) Oscillatory regulation of Hes1: discrete stochastic delay modelling and simulation. PLoS Comput Biol 2:e117

    Article  PubMed  Google Scholar 

  • Barton ER, Morris L, Musaro A, Rosenthal N, Sweeney HL (2002) Muscle-specific expression of insulin-like growth factor I counters muscle decline in mdx mice. J Cell Biol 157:137–148

    Article  PubMed  CAS  Google Scholar 

  • Beggs AH, Byers TJ, Knoll JH, Boyce FM, Bruns GA, Kunkel LM (1992) Cloning and characterization of two human skeletal muscle alpha-actinin genes located on chromosomes 1 and 11. J Biol Chem 267:9281–9288

    PubMed  CAS  Google Scholar 

  • Birney E, Stamatoyannopoulos JA, Dutta A, Guigo R, Gingeras TR, Margulies EH, Weng Z, Snyder M, Dermitzakis ET, Thurman RE, Kuehn MS, Taylor CM, Neph S, Koch CM, Asthana S, Malhotra A, Adzhubei I, Greenbaum JA, Andrews RM, Flicek P, Boyle PJ, Cao H, Carter NP, Clelland GK, Davis S, Day N, Dhami P, Dillon SC, Dorschner MO, Fiegler H, Giresi PG, Goldy J, Hawrylycz M, Haydock A, Humbert R, James KD, Johnson BE, Johnson EM, Frum TT, Rosenzweig ER, Karnani N, Lee K, Lefebvre GC, Navas PA, Neri F, Parker SC, Sabo PJ, Sandstrom R, Shafer A, Vetrie D, Weaver M, Wilcox S, Yu M, Collins FS, Dekker J, Lieb JD, Tullius TD, Crawford GE, Sunyaev S, Noble WS, Dunham I, Denoeud F, Reymond A, Kapranov P, Rozowsky J, Zheng D, Castelo R, Frankish A, Harrow J, Ghosh S, Sandelin A, Hofacker IL, Baertsch R, Keefe D, Dike S, Cheng J, Hirsch HA, Sekinger EA, Lagarde J, Abril JF, Shahab A, Flamm C, Fried C, Hackermuller J, Hertel J, Lindemeyer M, Missal K, Tanzer A, Washietl S, Korbel J, Emanuelsson O, Pedersen JS, Holroyd N, Taylor R, Swarbreck D, Matthews N, Dickson MC, Thomas DJ, Weirauch MT, Gilbert J, Drenkow J, Bell I, Zhao X, Srinivasan KG, Sung WK, Ooi HS, Chiu KP, Foissac S, Alioto T, Brent M, Pachter L, Tress ML, Valencia A, Choo SW, Choo CY, Ucla C, Manzano C, Wyss C, Cheung E, Clark TG, Brown JB, Ganesh M, Patel S, Tammana H, Chrast J, Henrichsen CN, Kai C, Kawai J, Nagalakshmi U, Wu J, Lian Z, Lian J, Newburger P, Zhang X, Bickel P, Mattick JS, Carninci P, Hayashizaki Y, Weissman S, Hubbard T, Myers RM, Rogers J, Stadler PF, Lowe TM, Wei CL, Ruan Y, Struhl K, Gerstein M, Antonarakis SE, Fu Y, Green ED, Karaoz U, Siepel A, Taylor J, Liefer LA, Wetterstrand KA, Good PJ, Feingold EA, Guyer MS, Cooper GM, Asimenos G, Dewey CN, Hou M, Nikolaev S, Montoya-Burgos JI, Loytynoja A, Whelan S, Pardi F, Massingham T, Huang H, Zhang NR, Holmes I, Mullikin JC, Ureta-Vidal A, Paten B, Seringhaus M, Church D, Rosenbloom K, Kent WJ, Stone EA, Batzoglou S, Goldman N, Hardison RC, Haussler D, Miller W, Sidow A, Trinklein ND, Zhang ZD, Barrera L, Stuart R, King DC, Ameur A, Enroth S, Bieda MC, Kim J, Bhinge AA, Jiang N, Liu J, Yao F, Vega VB, Lee CW, Ng P, Yang A, Moqtaderi Z, Zhu Z, Xu X, Squazzo S, Oberley MJ, Inman D, Singer MA, Richmond TA, Munn KJ, Rada-Iglesias A, Wallerman O, Komorowski J, Fowler JC, Couttet P, Bruce AW, Dovey OM, Ellis PD, Langford CF, Nix DA, Euskirchen G, Hartman S, Urban AE, Kraus P, Van Calcar S, Heintzman N, Kim TH, Wang K, Qu C, Hon G, Luna R, Glass CK, Rosenfeld MG, Aldred SF, Cooper SJ, Halees A, Lin JM, Shulha HP, Xu M, Haidar JN, Yu Y, Iyer VR, Green RD, Wadelius C, Farnham PJ, Ren B, Harte RA, Hinrichs AS, Trumbower H, Clawson H, Hillman-Jackson J, Zweig AS, Smith K, Thakkapallayil A, Barber G, Kuhn RM, Karolchik D, Armengol L, Bird CP, de Bakker PI, Kern AD, Lopez-Bigas N, Martin JD, Stranger BE, Woodroffe A, Davydov E, Dimas A, Eyras E, Hallgrimsdottir IB, Huppert J, Zody MC, Abecasis GR, Estivill X, Bouffard GG, Guan X, Hansen NF, Idol JR, Maduro VV, Maskeri B, McDowell JC, Park M, Thomas PJ, Young AC, Blakesley RW, Muzny DM, Sodergren E, Wheeler DA, Worley KC, Jiang H, Weinstock GM, Gibbs RA, Graves T, Fulton R, Mardis ER, Wilson RK, Clamp M, Cuff J, Gnerre S, Jaffe DB, Chang JL, Lindblad-Toh K, Lander ES, Koriabine M, Nefedov M, Osoegawa K, Yoshinaga Y, Zhu B, de Jong PJ (2007) Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447:799–816

    Google Scholar 

  • Buckingham M (1992) Making muscle in mammals. Trends Genet 8:144–149

    PubMed  CAS  Google Scholar 

  • Charge SB, Rudnicki MA (2004) Cellular and molecular regulation of muscle regeneration. Physiol Rev 84:209–238

    Article  PubMed  CAS  Google Scholar 

  • Chen T, Filkov V, Skiena SS (2001) Identifying gene regulatory networks from experimental data. Parallel Comput 27:141–162

    Article  Google Scholar 

  • Chiang DY, Brown PO, Eisen MB (2001) Visualizing associations between genome sequences and gene expression data using genome-mean expression profiles. Bioinformatics 17:49–55

    Article  Google Scholar 

  • D’Haeseleer P, Liang S, Somogyi R (2000) Genetic network inference: from co-expression clustering to reverse engineering. Bioinformatics 16:707–726

    Article  PubMed  Google Scholar 

  • Elkon R, Linhart C, Sharan R, Shamir R, Shiloh Y (2003) Genome-wide in silico identification of transcriptional regulators controlling the cell cycle in human cells. Genome Res 13:773–780

    Article  PubMed  CAS  Google Scholar 

  • Frith MC, Fu Y, Yu L, Chen JF, Hansen U, Weng Z (2004) Detection of functional DNA motifs via statistical over-representation. Nucleic Acids Res 32:1372–1381

    Article  PubMed  CAS  Google Scholar 

  • Fulton DL, Sundararajan S, Badis G, Hughes TR, Wasserman WW, Roach JC, Sladek R (2009) TFCat: the curated catalog of mouse and human transcription factors. Genome Biol 10:R29

    Article  PubMed  Google Scholar 

  • Gentleman R, Carey V, Bates D, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5:R80

    Article  PubMed  Google Scholar 

  • Gibson MC, Schultz E (1983) Age-related differences in absolute numbers of skeletal muscle satellite cells. Muscle Nerve 6:574–580

    Article  PubMed  CAS  Google Scholar 

  • Gilchrist M, Thorsson V, Li B, Rust AG, Korb M, Kennedy K, Hai T, Bolouri H, Aderem A (2006) Systems biology approaches identify ATF3 as a negative regulator of Toll-like receptor 4. Nature 441:173–178

    Article  PubMed  CAS  Google Scholar 

  • Holloway DT, Kon M, DeLisi C (2005) Integrating genomic data to predict transcription factor binding. Genome Inform 16:83–94

    PubMed  CAS  Google Scholar 

  • Huang da W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57

    Article  PubMed  Google Scholar 

  • Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4:249–264

    Article  PubMed  Google Scholar 

  • Jain AK, Dubes RC (1988) Algorithms for clustering data. Prentice Hall Inc., Englewood Cliffs, NJ

    Google Scholar 

  • Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, Yamanishi Y (2008) KEGG for linking genomes to life and the environment. Nucleic Acids Res 36:D480–D484

    Article  PubMed  CAS  Google Scholar 

  • Karolchik D, Kuhn RM, Baertsch R, Barber GP, Clawson H, Diekhans M, Giardine B, Harte RA, Hinrichs AS, Hsu F, Kober KM, Miller W, Pedersen JS, Pohl A, Raney BJ, Rhead B, Rosenbloom KR, Smith KE, Stanke M, Thakkapallayil A, Trumbower H, Wang T, Zweig AS, Haussler D, Kent WJ (2008) The UCSC genome browser database: 2008 update. Nucleic Acids Res 36:D773–D779

    Article  PubMed  CAS  Google Scholar 

  • Keren A, Tamir Y, Bengal E (2006) The p38 MAPK signaling pathway: a major regulator of skeletal muscle development. Mol Cell Endocrinol 252:224–230

    Article  PubMed  CAS  Google Scholar 

  • Lee HK, Hsu AK, Sajdak J, Qin J, Pavlidis P (2004) Coexpression analysis of human genes across many microarray data sets. Genome Res 14:1085–1094

    Article  PubMed  CAS  Google Scholar 

  • Lee AH, Chu GC, Iwakoshi NN, Glimcher LH (2005) XBP-1 is required for biogenesis of cellular secretory machinery of exocrine glands. EMBO J 24:4368–4380

    Article  PubMed  CAS  Google Scholar 

  • Lee KE, Nam S, Cho EA, Seong I, Limb JK, Lee S, Kim J (2008) Identification of direct regulatory targets of the transcription factor Sox10 based on function and conservation. BMC Genom 9:408

    Article  Google Scholar 

  • LeMaire MF, Thummel CS (1990) Splicing precedes polyadenylation during Drosophila E74A transcription. Mol Cell Biol 10:6059–6063

    PubMed  CAS  Google Scholar 

  • Li X, Jiang S, Tapping RI (2010) Toll-like receptor signaling in cell proliferation and survival. Cytokine 49:1–9

    Article  PubMed  CAS  Google Scholar 

  • Luscombe NM, Babu MM, Yu H, Snyder M, Teichmann SA, Gerstein M (2004) Genomic analysis of regulatory network dynamics reveals large topological changes. Nature 431(7006):308–312

    Article  PubMed  CAS  Google Scholar 

  • Masaki T, Yoshida M, Noguchi S (1999) Targeted disruption of CRE-binding factor TREB5 gene leads to cellular necrosis in cardiac myocytes at the embryonic stage. Biochem Biophys Res Commun 261:350–356

    Article  PubMed  CAS  Google Scholar 

  • Meadows E, Cho JH, Flynn JM, Klein WH (2008) Myogenin regulates a distinct genetic program in adult muscle stem cells. Dev Biol 322:406–414

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee B, Morgenbesser SD, DePinho RA (1992) Myc family oncoproteins function through a common pathway to transform normal cells in culture: cross-interference by Max and trans-acting dominant mutants. Genes Dev 6:1480–1492

    Article  PubMed  CAS  Google Scholar 

  • Nilsson R, Bajic VB, Suzuki H, di Bernardo D, Bjorkegren J, Katayama S, Reid JF, Sweet MJ, Gariboldi M, Carninci P, Hayashizaki Y, Hume DA, Tegner J, Ravasi T (2006) Transcriptional network dynamics in macrophage activation. Genomics 88:133–142

    Article  PubMed  CAS  Google Scholar 

  • Ramsey SA, Klemm SL, Zak DE, Kennedy KA, Thorsson V, Li B, Gilchrist M, Gold ES, Johnson CD, Litvak V, Navarro G, Roach JC, Rosenberger CM, Rust AG, Yudkovsky N, Aderem A, Shmulevich I (2008) Uncovering a macrophage transcriptional program by integrating evidence from motif scanning and expression dynamics. PLoS Comput Biol 4:e1000021

    Article  PubMed  Google Scholar 

  • Redestig H, Weicht D, Selbig J, Hannah M (2007) Transcription factor target prediction using multiple short expression time series from Arabidopsis thaliana. BMC Bioinformatics 18:454

    Article  Google Scholar 

  • Reimold AM, Etkin A, Clauss I, Perkins A, Friend DS, Zhang J, Horton HF, Scott A, Orkin SH, Byrne MC, Grusby MJ, Glimcher LH (2000) An essential role in liver development for transcription factor XBP-1. Genes Dev 14:152–157

    PubMed  CAS  Google Scholar 

  • Reimold AM, Iwakoshi NN, Manis J, Vallabhajosyula P, Szomolanyi-Tsuda E, Gravallese EM, Friend D, Grusby MJ, Alt F, Glimcher LH (2001) Plasma cell differentiation requires the transcription factor XBP-1. Nature 412:300–307

    Article  PubMed  CAS  Google Scholar 

  • Salmon M, Zehner ZE (2009) The transcriptional repressor ZBP-89 and the lack of Sp1/Sp3, c-Jun and Stat3 are important for the down-regulation of the vimentin gene during C2C12 myogenesis. Differentiation 77:492–504

    Article  PubMed  CAS  Google Scholar 

  • Sambasivan R, Tajbakhsh S (2007) Skeletal muscle stem cell birth and properties. Semin Cell Dev Biol 18:870–882

    Article  PubMed  CAS  Google Scholar 

  • Sandelin A, Alkema W, Engstrom P, Wasserman WW, Lenhard B (2004) JASPAR: an open-access database for eukaryotic transcription factor binding profiles. Nucleic Acids Res 32:D91–D94

    Article  PubMed  CAS  Google Scholar 

  • Schmitt WA, Raab RM, Stephanopoulos G (2004) Elucidation of gene interaction networks through time-lagged correlation analysis of transcriptional data. Genome Res 14:1654–1663

    Article  PubMed  CAS  Google Scholar 

  • Schultz E, Jaryszak DL, Valliere CR (1985) Response of satellite cells to focal skeletal muscle injury. Muscle Nerve 8:217–222

    Article  PubMed  CAS  Google Scholar 

  • Segal E, Shapira M, Regev A, Pe’er D, Botstein D, Koller D, Friedman N (2003) Module networks: discovering regulatory modules and their condition specific regulators from gene expression data. Nat Genet 34:166–176

    Article  PubMed  CAS  Google Scholar 

  • Stanton LW, Garrard LJ, Damm D, Garrick BL, Lam A, Kapoun AM, Zheng Q, Protter AA, Schreiner GF, White RT (2000) Altered patterns of gene expression in response to myocardial infarction. Circ Res 86:939–945

    PubMed  CAS  Google Scholar 

  • Summan M, McKinstry M, Warren GL, Hulderman T, Mishra D, Brumbaugh K, Luster MI, Simeonova PP (2003) Inflammatory mediators and skeletal muscle injury: a DNA microarray analysis. J Interferon Cytokine Res 23:237–245

    Article  PubMed  CAS  Google Scholar 

  • Tajbakhsh S (2009) Skeletal muscle stem cells in developmental versus regenerative myogenesis. J Intern Med 266:372–389

    Article  PubMed  CAS  Google Scholar 

  • Tajbakhsh S, Buckingham M (2000) The birth of muscle progenitor cells in the mouse: spatiotemporal considerations. Curr Top Dev Biol 48:225–268

    Article  PubMed  CAS  Google Scholar 

  • Tavazoie S, Hughes JD, Campbell MJ, Cho RJ, Church GM (1999) Systematic determination of genetic network architecture. Nat Genet 22:281–285

    Article  PubMed  CAS  Google Scholar 

  • Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 98:5116–5121

    Article  PubMed  CAS  Google Scholar 

  • Warren GL, Summan M, Gao X, Chapman R, Hulderman T, Simeonova PP (2007) Mechanisms of skeletal muscle injury and repair revealed by gene expression studies in mouse models. J Physiol 582:825–841

    Article  PubMed  CAS  Google Scholar 

  • Weins A, Schlondorff JS, Nakamura F, Denker BM, Hartwig JH, Stossel TP, Pollak MR (2007) Disease-associated mutant alpha-actinin-4 reveals a mechanism for regulating its F-actin-binding affinity. Proc Natl Acad Sci USA 104:16080–16085

    Article  PubMed  CAS  Google Scholar 

  • Wu WS, Li WH, Chen BS (2006) Computational reconstruction of transcriptional regulatory modules of the yeast cell cycle. BMC Bioinformatics 7:421

    Article  PubMed  Google Scholar 

  • Yan Z, Choi S, Liu X, Zhang M, Schageman JJ, Lee SY, Hart R, Lin L, Thurmond FA, Williams RS (2003) Highly coordinated gene regulation in mouse skeletal muscle regeneration. J Biol Chem 278:8826–8836

    Article  PubMed  CAS  Google Scholar 

  • Yeung KY, Haynor DR, Ruzzo WL (2001) Validating clustering for gene expression data. Bioinformatics 17:309–318

    Article  PubMed  CAS  Google Scholar 

  • Yu H, Luscombe NM, Qian J, Gerstein M (2003) Genomic analysis of gene expression relationships in transcriptional regulatory networks. Trends Genet 19:422–427

    Article  PubMed  CAS  Google Scholar 

  • Zhao XS, Gallardo TD, Lin L, Schageman JJ, Shohet RV (2002) Transcriptional mapping and genomic analysis of the cardiac atria and ventricles. Physiol Genomics 12:53–60

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors express their gratitude to the members of Animal Sciences Laboratory of Shanghai Jiao Tong University. This work was supported by the National Natural Science Foundation of China (grant Nos. 31072003, 31000992, and 30871782), National High Technology Research and Development Program of China (863) (grant Nos. 2008AA101009 and 2006AA10Z1E3), and the National Key Basic Research Program (973) (grant No. 2006CB102102).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yufang Ma or Yuchun Pan.

Additional information

M. Wang and Q. Wang contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

335_2011_9322_MOESM1_ESM.xls

Supplementary file 1 The probe sets that were identified as significantly differentially expressed, with each probe set mapped to a unique gene. (XLS 1373 kb)

Supplementary file 2 The timing specificity of response cluster pictures. (XLS 244 kb)

Supplementary file 3 The GO term enrichments identified within the eight gene clusters. (XLS 25 kb)

335_2011_9322_MOESM4_ESM.xls

Supplementary file 4 Predicted TF → potential target gene along with their inferred PCC and time shift values. (XLS 340 kb)

Supplementary file 5 The pathway enrichment analysis of targets that are above the threshold of PCC. (XLS 18 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, M., Wang, Q., Zhang, X. et al. Uncovering the transcriptional circuitry in skeletal muscle regeneration. Mamm Genome 22, 272–281 (2011). https://doi.org/10.1007/s00335-011-9322-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-011-9322-x

Keywords

Navigation