Abstract
Epigenetic inactivation due to aberrant promoter methylation is a key process in breast tumorigenesis. Murine models for human breast cancer have been established for nearly every important human oncogene or tumor suppressor gene. Mouse-to-human comparative gene expression and cytogenetic profiling have been widely investigated for these models; however, little is known about the conservation of epigenetic alterations during tumorigenesis. To determine if this key process in human breast tumorigenesis is also mirrored in a murine breast cancer model, we mapped cytosine methylation changes in primary adenocarcinomas and paired lung metastases derived from the polyomavirus middle T antigen mouse model. Global changes in methylcytosine levels were observed in all tumors when compared to the normal mammary gland. Aberrant methylation and associated gene silencing was observed for Hoxa7, a gene that is differentially methylated in human breast tumors, and Gata2, a novel candidate gene. Analysis of HOXA7 and GATA2 expression in a bank of human primary tumors confirms that the expression of these genes is also reduced in human breast cancer. In addition, HOXA7 hypermethylation is observed in breast cancer tissues when compared to adjacent tumor-free tissue. Based on these studies, we present a model in which comparative epigenetic techniques can be used to identify novel candidate genes important for human breast tumorigenesis, in both primary and metastatic tumors.
Similar content being viewed by others
References
Andrechek ER, Laing MA, Girgis-Gabardo AA, Siegel PM, Cardiff RD et al (2003) Gene expression profiling of neu-induced mammary tumors from transgenic mice reveals genetic and morphological similarities to ErbB2-expressing human breast cancers. Cancer Res 63:4920–4926
Antoniou AC, Sinilnikova OM, McGuffog L, Healey S, Nevanlinna H et al (2009) Common variants in LSP1, 2q35 and 8q24 and breast cancer risk for BRCA1 and BRCA2 mutation carriers. Hum Mol Genet 18:4442–4456
Asselin-Labat ML, Sutherland KD, Barker H, Thomas R, Shackleton M et al (2007) Gata-3 is an essential regulator of mammary-gland morphogenesis and luminal-cell differentiation. Nat Cell Biol 9:201–209
Ben-Porath I, Thomson MW, Carey VJ, Ge R, Bell GW et al (2008) An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet 40:499–507
Bernstein BE, Kamal M, Lindblad-Toh K, Bekiranov S, Bailey DK et al (2005) Genomic maps and comparative analysis of histone modifications in human and mouse. Cell 120:169–181
Bowen TJ, Yakushiji H, Montagna C, Jain S, Ried T et al (2005) Atm heterozygosity cooperates with loss of Brca1 to increase the severity of mammary gland cancer and reduce ductal branching. Cancer Res 65:8736–8746
Chen RZ, Pettersson U, Beard C, Jackson-Grusby L, Jaenisch R (1998) DNA hypomethylation leads to elevated mutation rates. Nature 395:89–93
Davisson MT (1994) Rules and guidelines for nomenclature of mouse genes. International committee on standardized genetic nomenclature for mice. Gene 147:157–160
Demircan B, Dyer LM, Gerace M, Lobenhofer EK, Robertson KD et al (2009) Comparative epigenomics of human and mouse mammary tumors. Genes Chromosomes Cancer 48:83–97
Dorritie K, Montagna C, Difilippantonio MJ, Ried T (2004) Advanced molecular cytogenetics in human and mouse. Expert Rev Mol Diagn 4:663–676
Ehrich M, Nelson MR, Stanssens P, Zabeau M, Liloglou T et al (2005) Quantitative high-throughput analysis of DNA methylation patterns by base-specific cleavage and mass spectrometry. Proc Natl Acad Sci USA 102:15785–15790
Esteller M (2008) Epigenetics in cancer. N Engl J Med 358:1148–1159
Figueroa ME, Lugthart S, Li Y, Erpelinck-Verschueren C, Deng X et al (2010) DNA methylation signatures identify biologically distinct subtypes in acute myeloid leukemia. Cancer Cell 17:13–27
Gaudet F, Hodgson JG, Eden A, Jackson-Grusby L, Dausman J et al (2003) Induction of tumors in mice by genomic hypomethylation. Science 300:489–492
Guy CT, Cardiff RD, Muller WJ (1992) Induction of mammary tumors by expression of polyomavirus middle T oncogene: a transgenic mouse model for metastatic disease. Mol Cell Biol 12:954–961
Herschkowitz JI, Simin K, Weigman VJ, Mikaelian I, Usary J et al (2007) Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biol 8:R76
Hutchinson JN, Muller WJ (2000) Transgenic mouse models of human breast cancer. Oncogene 19:6130–6137
Ihaka R (2008) R: A language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. ISBN 3-900051-07-0
Irizarry RA, Ladd-Acosta C, Wen B, Wu Z, Montano C et al (2009) The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet 41:178–186
Jones PA, Baylin SB (2007) The epigenomics of cancer. Cell 128:683–692
Khulan B, Thompson RF, Ye K, Fazzari MJ, Suzuki M et al (2006) Comparative isoschizomer profiling of cytosine methylation: the HELP assay. Genome Res 16:1046–1055
Kouros-Mehr H, Bechis SK, Slorach EM, Littlepage LE, Egeblad M et al (2008) GATA-3 links tumor differentiation and dissemination in a luminal breast cancer model. Cancer Cell 13:141–152
Lin EY, Jones JG, Li P, Zhu L, Whitney KD et al (2003) Progression to malignancy in the polyoma middle T oncoprotein mouse breast cancer model provides a reliable model for human diseases. Am J Pathol 163:2113–2126
Makiyama K, Hamada J, Takada M, Murakawa K, Takahashi Y et al (2005) Aberrant expression of HOX genes in human invasive breast carcinoma. Oncol Rep 13:673–679
McNeil N, Montagna C, Difilippantonio MJ, Ried T (2003) Comparative Cancer Cytogenetics. Atlas Genet Cytogenet Oncol Haematol 7(4):611-636. http://AtlasGeneticsOncology.org/Deep/ComparCancerCytogID20011.html
Montagna C, Andrechek ER, Padilla-Nash H, Muller WJ, Ried T (2002) Centrosome abnormalities, recurring deletions of chromosome 4, and genomic amplification of HER2/neu define mouse mammary gland adenocarcinomas induced by mutant HER2/neu. Oncogene 21:890–898
Montagna C, Lyu MS, Hunter K, Lukes L, Lowther W et al (2003) The Septin 9 (MSF) gene is amplified and overexpressed in mouse mammary gland adenocarcinomas and human breast cancer cell lines. Cancer Res 63:2179–2187
Novak P, Jensen T, Oshiro MM, Wozniak RJ, Nouzova M et al (2006) Epigenetic inactivation of the HOXA gene cluster in breast cancer. Cancer Res 66:10664–10670
Novak P, Jensen T, Oshiro MM, Watts GS, Kim CJ et al (2008) Agglomerative epigenetic aberrations are a common event in human breast cancer. Cancer Res 68:8616–8625
Oda M, Glass JL, Thompson RF, Mo Y, Olivier EN et al (2009) High-resolution genome-wide cytosine methylation profiling with simultaneous copy number analysis and optimization for limited cell numbers. Nucleic Acids Res 37:3829–3839
Okazaki Y, Furuno M, Kasukawa T, Adachi J, Bono H et al (2002) Analysis of the mouse transcriptome based on functional annotation of 60, 770 full-length cDNAs. Nature 420:563–573
Ordway JM, Budiman MA, Korshunova Y, Maloney RK, Bedell JA et al (2007) Identification of novel high-frequency DNA methylation changes in breast cancer. PLoS ONE 2:e1314
Ried T, Dorritie K, Weaver Z, Wangsa D, Difilippantonio MJ et al (2004) Molecular cytogenetics of mouse models of breast cancer. Breast Dis 19:59–67
Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3:1101–1108
Selzer RR, Richmond TA, Pofahl NJ, Green RD, Eis PS et al (2005) Analysis of chromosome breakpoints in neuroblastoma at sub-kilobase resolution using fine-tiling oligonucleotide array CGH. Genes Chromosomes Cancer 44:305–319
Thompson RF, Suzuki M, Lau KW, Greally JM (2009) A pipeline for the quantitative analysis of CG dinucleotide methylation using mass spectrometry. Bioinformatics 25:2164–2170
Tommasi S, Karm DL, Wu X, Yen Y, Pfeifer GP (2009) Methylation of homeobox genes is a frequent and early epigenetic event in breast cancer. Breast Cancer Res 11:R14
Tsai AG, Lu H, Raghavan SC, Muschen M, Hsieh CL et al (2008) Human chromosomal translocations at CpG sites and a theoretical basis for their lineage and stage specificity. Cell 135:1130–1142
Vu TH, Jirtle RL, Hoffman AR (2006) Cross-species clues of an epigenetic imprinting regulatory code for the IGF2R gene. Cytogenet Genome Res 113:202–208
Wang X, Liu L, Montagna C, Ried T, Deng CX (2007) Haploinsufficiency of Parp1 accelerates Brca1-associated centrosome amplification, telomere shortening, genetic instability, apoptosis, and embryonic lethality. Cell Death Differ 14:924–931
Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF et al (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562
Weaver ZA, McCormack SJ, Liyanage M, du Manoir S, Coleman A et al (1999) A recurring pattern of chromosomal aberrations in mammary gland tumors of MMTV-cmyc transgenic mice. Genes Chromosomes Cancer 25:251–260
Weaver Z, Montagna C, Xu X, Howard T, Gadina M et al (2002) Mammary tumors in mice conditionally mutant for Brca1 exhibit gross genomic instability and centrosome amplification yet display a recurring distribution of genomic imbalances that is similar to human breast cancer. Oncogene 21:5097–5107
Widschwendter M, Jones PA (2002) DNA methylation and breast carcinogenesis. Oncogene 21:5462–5482
Wilson AS, Power BE, Molloy PL (2007) DNA hypomethylation and human diseases. Biochim Biophys Acta 1775:138–162
Ye Y, Qiu TH, Kavanaugh C, Green JE (2004) Molecular mechanisms of breast cancer progression: lessons from mouse mammary cancer models and gene expression profiling. Breast Dis 19:69–82
Acknowledgments
We thank members of the Greally’s lab for constructive discussion and Zhixia Yang for her assistance with sample preparation. We thank the Shared Resources at Albert Einstein College of Medicine: GIF (Genome Imaging Facility) for help with the SKY; Dr. Shahina Maqbool and the Center for Epigenomics for assistance with the epigenomic studies; Brent Calder and the Computational Genomic Core for help with the data processing. We are grateful to Dr. Thomas Ried for providing the mouse SKY kits, to Dr. Jeffrey Pollard for providing the PyMT mice, and to Dr. Maria Figueroa for help with the R scripts.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Acosta, D., Suzuki, M., Connolly, D. et al. DNA methylation changes in murine breast adenocarcinomas allow the identification of candidate genes for human breast carcinogenesis. Mamm Genome 22, 249–259 (2011). https://doi.org/10.1007/s00335-011-9318-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00335-011-9318-6