Skip to main content
Log in

Host resistance to malaria: using mouse models to explore the host response

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

Malaria is a disease that infects over 500 million people, causing at least 1 million deaths every year, with the majority occurring in developing countries. The current antimalarial arsenal is becoming dulled due to the rapid rate of resistance of the parasite. However, in populations living in malaria-endemic regions there are many examples of genetic-based resistance to the severe effects of the parasite Plasmodium. Defining the genetic factors behind host resistance has been an area of great scientific interest over the last few decades; this review summarizes the current knowledge of the genetic loci involved. Perhaps the lessons learned from the natural variation in both the human populations and experimental mouse models of infection may pave the way for novel resistance-proof antimalarials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amani V, Vigario AM, Belnoue E, Marussig M, Fonseca L et al (2000) Involvement of IFN-gamma receptor-mediated signaling in pathology and anti-malarial immunity induced by Plasmodium berghei infection. Eur J Immunol 30:1646–1655

    CAS  PubMed  Google Scholar 

  • Amante FH, Stanley AC, Randall LM, Zhou Y, Haque A et al (2007) A role for natural regulatory T cells in the pathogenesis of experimental cerebral malaria. Am J Pathol 171:548–559

    CAS  PubMed  Google Scholar 

  • Ayi K, Turrini F, Piga A, Arese P (2004) Enhanced phagocytosis of ring-parasitized mutant erythrocytes: a common mechanism that may explain protection against falciparum malaria in sickle trait and beta-thalassemia trait. Blood 104:3364–3371

    CAS  PubMed  Google Scholar 

  • Ayi K, Min-Oo G, Serghides L, Crockett M, Kirby-Allen M et al (2008) Pyruvate kinase deficiency and malaria. N Engl J Med 358:1805–1810

    CAS  PubMed  Google Scholar 

  • Bagot S, Campino S, Penha-Goncalves C, Pied S, Cazenave PA et al (2002) Identification of two cerebral malaria resistance loci using an inbred wild-derived mouse strain. Proc Natl Acad Sci USA 99:9919–9923

    CAS  PubMed  Google Scholar 

  • Beghdadi W, Porcherie A, Schneider BS, Dubayle D, Peronet R et al (2008) Inhibition of histamine-mediated signaling confers significant protection against severe malaria in mouse models of disease. J Exp Med 205:395–408

    CAS  PubMed  Google Scholar 

  • Belnoue E, Kayibanda M, Deschemin JC, Viguier M, Mack M et al (2003) CCR5 deficiency decreases susceptibility to experimental cerebral malaria. Blood 101:4253–4259

    CAS  PubMed  Google Scholar 

  • Berghout J, Min-Oo G, Tam M, Gauthier S, Stevenson MM et al (2009) Identification of a novel cerebral malaria susceptibility locus (Berr5) on mouse chromosome 19. Genes Immun 11:310–318

    PubMed  Google Scholar 

  • Bongfen SE, Laroque A, Berghout J, Gros P (2009) Genetic and genomic analyses of host-pathogen interactions in malaria. Trends Parasitol 25:417–422

    CAS  PubMed  Google Scholar 

  • Brand V, Koka S, Lang C, Jendrossek V, Huber SM et al (2008) Influence of amitriptyline on eryptosis, parasitemia and survival of Plasmodium berghei-infected mice. Cell Physiol Biochem 22:405–412

    CAS  PubMed  Google Scholar 

  • Bullen DV, Hansen DS, Siomos MA, Schofield L, Alexander WS et al (2003) The lack of suppressor of cytokine signalling-1 (SOCS1) protects mice from the development of cerebral malaria caused by Plasmodium berghei ANKA. Parasite Immunol 25:113–118

    CAS  PubMed  Google Scholar 

  • Burt RA, Baldwin TM, Marshall VM, Foote SJ (1999) Temporal expression of an H2-linked locus in host response to mouse malaria. Immunogenetics 50:278–285

    CAS  PubMed  Google Scholar 

  • Campanella GS, Tager AM, El Khoury JK, Thomas SY, Abrazinski TA et al (2008) Chemokine receptor CXCR3 and its ligands CXCL9 and CXCL10 are required for the development of murine cerebral malaria. Proc Natl Acad Sci USA 105:4814–4819

    CAS  PubMed  Google Scholar 

  • Campino S, Bagot S, Bergman ML, Almeida P, Sepulveda N et al (2005) Genetic control of parasite clearance leads to resistance to Plasmodium berghei ANKA infection and confers immunity. Genes Immun 6:416–421

    CAS  PubMed  Google Scholar 

  • Carvalho LJ (2010) Murine cerebral malaria: how far from human cerebral malaria? Trends Parasitol 26:271–272

    PubMed  Google Scholar 

  • Coban C, Ishii KJ, Uematsu S, Arisue N, Sato S et al (2007) Pathological role of Toll-like receptor signaling in cerebral malaria. Int Immunol 19:67–79

    CAS  PubMed  Google Scholar 

  • Combes V, Rosenkranz AR, Redard M, Pizzolato G, Lepidi H et al (2004) Pathogenic role of P-selectin in experimental cerebral malaria: importance of the endothelial compartment. Am J Pathol 164:781–786

    CAS  PubMed  Google Scholar 

  • Combes V, Coltel N, Alibert M, van Eck M, Raymond C et al (2005) ABCA1 gene deletion protects against cerebral malaria: potential pathogenic role of microparticles in neuropathology. Am J Pathol 166:295–302

    CAS  PubMed  Google Scholar 

  • Cox D, McConkey S (2010) The role of platelets in the pathogenesis of cerebral malaria. Cell Mol Life Sci 67:557–568

    CAS  PubMed  Google Scholar 

  • Cunha-Rodrigues M, Portugal S, Febbraio M, Mota MM (2006) Infection by and protective immune responses against Plasmodium berghei ANKA are not affected in macrophage scavenger receptors A deficient mice. BMC Microbiol 6:73

    PubMed  Google Scholar 

  • Darvasi A, Soller M (1995) Advanced intercross lines, an experimental population for fine genetic mapping. Genetics 141:1199–1207

    CAS  PubMed  Google Scholar 

  • de Souza JB, Hafalla JC, Riley EM, Couper KN (2010) Cerebral malaria: why experimental murine models are required to understand the pathogenesis of disease. Parasitology 137:755–772

    PubMed  Google Scholar 

  • Delahaye NF, Coltel N, Puthier D, Flori L, Houlgatte R et al (2006) Gene-expression profiling discriminates between cerebral malaria (CM)-susceptible mice and CM-resistant mice. J Infect Dis 193:312–321

    CAS  PubMed  Google Scholar 

  • Delic D, Warskulat U, Borsch E, Al-Qahtani S, Al-Quraishi S et al (2010) Loss of ability to self-heal malaria upon taurine transporter deletion. Infect Immun 78:1642–1649

    CAS  PubMed  Google Scholar 

  • Dondorp AM, Nosten F, Yi P, Das D, Phyo AP et al (2009) Artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med 361:455–467

    CAS  PubMed  Google Scholar 

  • Engwerda CR, Mynott TL, Sawhney S, De Souza JB, Bickle QD et al (2002) Locally up-regulated lymphotoxin alpha, not systemic tumor necrosis factor alpha, is the principal mediator of murine cerebral malaria. J Exp Med 195:1371–1377

    CAS  PubMed  Google Scholar 

  • Evans KJ, Hansen DS, van Rooijen N, Buckingham LA, Schofield L (2006) Severe malarial anemia of low parasite burden in rodent models results from accelerated clearance of uninfected erythrocytes. Blood 107:1192–1199

    CAS  PubMed  Google Scholar 

  • Finney CA, Lu Z, LeBourhis L, Philpott DJ, Kain KC (2009) Disruption of Nod-like receptors alters inflammatory response to infection but does not confer protection in experimental cerebral malaria. Am J Trop Med Hyg 80:718–722

    CAS  PubMed  Google Scholar 

  • Flint J, Hill AV, Bowden DK, Oppenheimer SJ, Sill PR et al (1986) High frequencies of alpha-thalassaemia are the result of natural selection by malaria. Nature 321:744–750

    CAS  PubMed  Google Scholar 

  • Foote SJ, Burt RA, Baldwin TM, Presente A, Roberts AW et al (1997) Mouse loci for malaria-induced mortality and the control of parasitaemia. Nat Genet 17:380–381

    CAS  PubMed  Google Scholar 

  • Fortin A, Belouchi A, Tam MF, Cardon L, Skamene E et al (1997) Genetic control of blood parasitaemia in mouse malaria maps to chromosome 8. Nat Genet 17:382–383

    CAS  PubMed  Google Scholar 

  • Fortin A, Cardon LR, Tam M, Skamene E, Stevenson MM et al (2001) Identification of a new malaria susceptibility locus (Char4) in recombinant congenic strains of mice. Proc Natl Acad Sci USA 98:10793–10798

    CAS  PubMed  Google Scholar 

  • Fortin A, Stevenson MM, Gros P (2002) Complex genetic control of susceptibility to malaria in mice. Genes Immun 3:177–186

    CAS  PubMed  Google Scholar 

  • Francischetti IM (2008) Does activation of the blood coagulation cascade have a role in malaria pathogenesis? Trends Parasitol 24:258–263

    CAS  PubMed  Google Scholar 

  • Friedman MJ (1978) Erythrocytic mechanism of sickle cell resistance to malaria. Proc Natl Acad Sci USA 75:1994–1997

    CAS  PubMed  Google Scholar 

  • Gramaglia I, Sobolewski P, Meays D, Contreras R, Nolan JP et al (2006) Low nitric oxide bioavailability contributes to the genesis of experimental cerebral malaria. Nat Med 12:1417–1422

    CAS  PubMed  Google Scholar 

  • Greenberg J, Nadel EM, Coatney GR (1954) Differences in survival of several inbred strains of mice and their hybrids infected with Plasmodium berghei. J Infect Dis 95:114–116

    CAS  PubMed  Google Scholar 

  • Haldane JBS (1949) The rate of mutation of human genes. Proceedings of the Eighth International Congress of Genetics. Hereditas 35:267–273

    Google Scholar 

  • Hansen AM, Ball HJ, Mitchell AJ, Miu J, Takikawa O et al (2004) Increased expression of indoleamine 2,3-dioxygenase in murine malaria infection is predominantly localised to the vascular endothelium. Int J Parasitol 34:1309–1319

    CAS  PubMed  Google Scholar 

  • Hansen DS, Siomos MA, Buckingham L, Scalzo AA, Schofield L (2003) Regulation of murine cerebral malaria pathogenesis by CD1d-restricted NKT cells and the natural killer complex. Immunity 18:391–402

    CAS  PubMed  Google Scholar 

  • Herbas MS, Okazaki M, Terao E, Xuan X, Arai H et al (2010) alpha-Tocopherol transfer protein inhibition is effective in the prevention of cerebral malaria in mice. Am J Clin Nutr 91:200–207

    CAS  PubMed  Google Scholar 

  • Hernandez-Valladares M, Naessens J, Gibson JP, Musoke AJ, Nagda S et al (2004a) Confirmation and dissection of QTL controlling resistance to malaria in mice. Mamm Genome 15:390–398

    PubMed  Google Scholar 

  • Hernandez-Valladares M, Rihet P, Ole-MoiYoi OK, Iraqi FA (2004b) Mapping of a new quantitative trait locus for resistance to malaria in mice by a comparative mapping approach with human Chromosome 5q31–q33. Immunogenetics 56:115–117

    CAS  PubMed  Google Scholar 

  • Hernandez-Valladares M, Naessens J, Iraqi FA (2005) Genetic resistance to malaria in mouse models. Trends Parasitol 21:352–355

    CAS  PubMed  Google Scholar 

  • Hill AV, Allsopp CE, Kwiatkowski D, Anstey NM, Twumasi P et al (1991) Common west African HLA antigens are associated with protection from severe malaria. Nature 352:595–600

    CAS  PubMed  Google Scholar 

  • Hisaeda H, Tetsutani K, Imai T, Moriya C, Tu L et al (2008) Malaria parasites require TLR9 signaling for immune evasion by activating regulatory T cells. J Immunol 180:2496–2503

    CAS  PubMed  Google Scholar 

  • Huber SM, Duranton C, Henke G, Van De Sand C, Heussler V et al (2004) Plasmodium induces swelling-activated ClC-2 anion channels in the host erythrocyte. J Biol Chem 279:41444–41452

    CAS  PubMed  Google Scholar 

  • Hunt NH, Driussi C, Sai-Kiang L (2001) Haptoglobin and malaria. Redox Rep 6:389–392

    CAS  PubMed  Google Scholar 

  • Hunt NH, Golenser J, Chan-Ling T, Parekh S, Rae C et al (2006) Immunopathogenesis of cerebral malaria. Int J Parasitol 36:569–582

    CAS  PubMed  Google Scholar 

  • Hunt NH, Grau GE, Engwerda C, Barnum SR, van der Heyde H et al (2010) Murine cerebral malaria: the whole story. Trends Parasitol 26:272–274

    PubMed  Google Scholar 

  • Ing R, Gros P, Stevenson MM (2005) Interleukin-15 enhances innate and adaptive immune responses to blood-stage malaria infection in mice. Infect Immun 73:3172–3177

    CAS  PubMed  Google Scholar 

  • Ishikawa S, Uozumi N, Shiibashi T, Izumi T, Fukayama M et al (2004) Short report: Lethal malaria in cytosolic phospholipase A2- and phospholipase A2IIA-deficient mice. Am J Trop Med Hyg 70:645–650

    CAS  PubMed  Google Scholar 

  • Jallow M, Teo YY, Small KS, Rockett KA, Deloukas P et al (2009) Genome-wide and fine-resolution association analysis of malaria in West Africa. Nat Genet 41(6):657–665

    CAS  PubMed  Google Scholar 

  • Jarolim P, Palek J, Amato D, Hassan K, Sapak P et al (1991) Deletion in erythrocyte band 3 gene in malaria-resistant Southeast Asian ovalocytosis. Proc Natl Acad Sci USA 88:11022–11026

    CAS  PubMed  Google Scholar 

  • Kwiatkowski DP, Luoni G (2006) Host genetic factors in resistance and susceptibility to malaria. Parassitologia 48:450–467

    PubMed  Google Scholar 

  • Lamb TJ, Brown DE, Potocnik AJ, Langhorne J (2006) Insights into the immunopathogenesis of malaria using mouse models. Expert Rev Mol Med 8:1–22

    PubMed  Google Scholar 

  • Li J, Chang WL, Sun G, Chen HL, Specian RD et al (2003) Intercellular adhesion molecule 1 is important for the development of severe experimental malaria but is not required for leukocyte adhesion in the brain. J Investig Med 51:128–140

    CAS  PubMed  Google Scholar 

  • Lin E, Pappenfuss T, Tan RB, Senyschyn D, Bahlo M et al (2006) Mapping of the Plasmodium chabaudi resistance locus char2. Infect Immun 74:5814–5819

    CAS  PubMed  Google Scholar 

  • Lovegrove FE, Gharib SA, Patel SN, Hawkes CA, Kain KC et al (2007) Expression microarray analysis implicates apoptosis and interferon-responsive mechanisms in susceptibility to experimental cerebral malaria. Am J Pathol 171:1894–1903

    CAS  PubMed  Google Scholar 

  • McDevitt MA, Xie J, Shanmugasundaram G, Griffith J, Liu A et al (2006) A critical role for the host mediator macrophage migration inhibitory factor in the pathogenesis of malarial anemia. J Exp Med 203:1185–1196

    CAS  PubMed  Google Scholar 

  • McGuire W, Hill AV, Allsopp CE, Greenwood BM, Kwiatkowski D (1994) Variation in the TNF-alpha promoter region associated with susceptibility to cerebral malaria. Nature 371:508–510

    CAS  PubMed  Google Scholar 

  • Menard D, Barnadas C, Bouchier C, Henry-Halldin C, Gray LR et al (2010) Plasmodium vivax clinical malaria is commonly observed in Duffy-negative Malagasy people. Proc Natl Acad Sci USA 107:5967–5971

    CAS  PubMed  Google Scholar 

  • Min-Oo G, Fortin A, Tam MF, Nantel A, Stevenson MM et al (2003) Pyruvate kinase deficiency in mice protects against malaria. Nat Genet 35:357–362

    CAS  PubMed  Google Scholar 

  • Min-Oo G, Fortin A, Tam MF, Gros P, Stevenson MM (2004) Phenotypic expression of pyruvate kinase deficiency and protection against malaria in a mouse model. Genes Immun 5:168–175

    CAS  PubMed  Google Scholar 

  • Min-Oo G, Fortin A, Pitari G, Tam M, Stevenson MM et al (2007a) Complex genetic control of susceptibility to malaria: positional cloning of the Char9 locus. J Exp Med 204:511–524

    CAS  PubMed  Google Scholar 

  • Min-Oo G, Tam M, Stevenson MM, Gros P (2007b) Pyruvate kinase deficiency: correlation between enzyme activity, extent of hemolytic anemia and protection against malaria in independent mouse mutants. Blood Cells Mol Dis 39:63–69

    CAS  PubMed  Google Scholar 

  • Min-Oo G, Willemetz A, Tam M, Canonne-Hergaux F, Stevenson MM et al (2010) Mapping of Char10, a novel malaria susceptibility locus on mouse chromosome 9. Genes Immun 11:113–123

    CAS  PubMed  Google Scholar 

  • Mishra SK, Newton CR (2009) Diagnosis and management of the neurological complications of falciparum malaria. Nat Rev Neurol 5:189–198

    PubMed  Google Scholar 

  • Miu J, Mitchell AJ, Muller M, Carter SL, Manders PM et al (2008) Chemokine gene expression during fatal murine cerebral malaria and protection due to CXCR3 deficiency. J Immunol 180:1217–1230

    CAS  PubMed  Google Scholar 

  • Mullerova J, Hozak P (2004) Use of recombinant congenic strains in mapping disease-modifying genes. News Physiol Sci 19:105–109

    PubMed  Google Scholar 

  • Nagayasu E, Nagakura K, Akaki M, Tamiya G, Makino S et al (2002) Association of a determinant on mouse chromosome 18 with experimental severe Plasmodium berghei malaria. Infect Immun 70:512–516

    CAS  PubMed  Google Scholar 

  • Nielsen PJ, Lorenz B, Muller AM, Wenger RH, Brombacher F et al (1997) Altered erythrocytes and a leaky block in B-cell development in. Blood 89:1058–1067

    CAS  PubMed  Google Scholar 

  • Oakley MS, Majam V, Mahajan B, Gerald N, Anantharaman V et al (2009) Pathogenic roles of CD14, galectin-3, and OX40 during experimental cerebral malaria in mice. PLoS One 4:e6793

    PubMed  Google Scholar 

  • Ohno T, Nishimura M (2004) Detection of a new cerebral malaria susceptibility locus, using CBA mice. Immunogenetics 56:675–678

    CAS  PubMed  Google Scholar 

  • Ohno T, Ishih A, Kohara Y, Yonekawa H, Terada M et al (2001) Chromosomal mapping of the host resistance locus to rodent malaria (Plasmodium yoelii) infection in mice. Immunogenetics 53:736–740

    CAS  PubMed  Google Scholar 

  • Ohno T, Kobayashi F, Nishimura M (2005) Fas has a role in cerebral malaria, but not in proliferation or exclusion of the murine parasite in mice. Immunogenetics 57:293–296

    PubMed  Google Scholar 

  • Pamplona A, Ferreira A, Balla J, Jeney V, Balla G et al (2007) Heme oxygenase-1 and carbon monoxide suppress the pathogenesis of experimental cerebral malaria. Nat Med 13:703–710

    CAS  PubMed  Google Scholar 

  • Patel SN, Berghout J, Lovegrove FE, Ayi K, Conroy A et al (2008) C5 deficiency and C5a or C5aR blockade protects against cerebral malaria. J Exp Med 205:1133–1143

    CAS  PubMed  Google Scholar 

  • Pennacchio LA (2003) Insights from human/mouse genome comparisons. Mamm Genome 14:429–436

    CAS  PubMed  Google Scholar 

  • Piguet PF, Da Laperrousaz C, Vesin C, Tacchini-Cottier F, Senaldi G et al (2000) Delayed mortality and attenuated thrombocytopenia associated with severe malaria in urokinase- and urokinase receptor-deficient mice. Infect Immun 68:3822–3829

    CAS  PubMed  Google Scholar 

  • Piguet PF, Kan CD, Vesin C (2002) Role of the tumor necrosis factor receptor 2 (TNFR2) in cerebral malaria in mice. Lab Invest 82:1155–1166

    CAS  PubMed  Google Scholar 

  • Piguet PF, Kan CD, Vesin C, Rochat A, Donati Y et al (2001) Role of CD40-CVD40L in mouse severe malaria. Am J Pathol 159:733–742

    CAS  PubMed  Google Scholar 

  • Potter S, Chan-Ling T, Ball HJ, Mansour H, Mitchell A et al (2006) Perforin mediated apoptosis of cerebral microvascular endothelial cells during experimental cerebral malaria. Int J Parasitol 36:485–496

    CAS  PubMed  Google Scholar 

  • Potter SM, Mitchell AJ, Cowden WB, Sanni LA, Dinauer M et al (2005) Phagocyte-derived reactive oxygen species do not influence the progression of murine blood-stage malaria infections. Infect Immun 73:4941–4947

    CAS  PubMed  Google Scholar 

  • Rank G, Sutton R, Marshall V, Lundie RJ, Caddy J et al (2009) Novel roles for erythroid Ankyrin-1 revealed through an ENU-induced null mouse mutant. Blood 113(14):3352–3362

    CAS  PubMed  Google Scholar 

  • Reimer T, Shaw MH, Franchi L, Coban C, Ishii KJ et al (2010) Experimental cerebral malaria progresses independently of the Nlrp3 inflammasome. Eur J Immunol 40:764–769

    CAS  PubMed  Google Scholar 

  • Renia L, Gruner AC, Snounou G (2010) Cerebral malaria: in praise of epistemes. Trends Parasitol 26:275–277

    PubMed  Google Scholar 

  • Riley EM, Couper KN, Helmby H, Hafalla JC, de Souza JB et al (2010) Neuropathogenesis of human and murine malaria. Trends Parasitol 26:277–278

    PubMed  Google Scholar 

  • Riopel J, Tam M, Mohan K, Marino MW, Stevenson MM (2001) Granulocyte-macrophage colony-stimulating factor-deficient mice have impaired resistance to blood-stage malaria. Infect Immun 69:129–136

    CAS  PubMed  Google Scholar 

  • Ruwende C, Hill A (1998) Glucose-6-phosphate dehydrogenase deficiency and malaria. J Mol Med 76:581–588

    CAS  PubMed  Google Scholar 

  • Saeftel M, Krueger A, Arriens S, Heussler V, Racz P et al (2004) Mice deficient in interleukin-4 (IL-4) or IL-4 receptor alpha have higher resistance to sporozoite infection with Plasmodium berghei (ANKA) than do naive wild-type mice. Infect Immun 72:322–331

    CAS  PubMed  Google Scholar 

  • Sanni LA, Jarra W, Li C, Langhorne J (2004) Cerebral edema and cerebral hemorrhages in interleukin-10-deficient mice infected with Plasmodium chabaudi. Infect Immun 72:3054–3058

    CAS  PubMed  Google Scholar 

  • Senaldi G, Shaklee CL, Guo J, Martin L, Boone T et al (1999) Protection against the mortality associated with disease models mediated by TNF and IFN-gamma in mice lacking IFN regulatory factor-1. J Immunol 163:6820–6826

    CAS  PubMed  Google Scholar 

  • Sexton AC, Good RT, Hansen DS, D’Ombrain MC, Buckingham L et al (2004) Transcriptional profiling reveals suppressed erythropoiesis, up-regulated glycolysis, and interferon-associated responses in murine malaria. J Infect Dis 189:1245–1256

    CAS  PubMed  Google Scholar 

  • Shear HL, Roth E Jr, Ng C, Nagel RL (1991) Resistance to malaria in ankyrin and spectrin deficient mice. Br J Haematol 78:555–560

    CAS  PubMed  Google Scholar 

  • Srivastava K, Cockburn IA, Swaim A, Thompson LE, Tripathi A et al (2008) Platelet factor 4 mediates inflammation in experimental cerebral malaria. Cell Host Microbe 4:179–187

    CAS  PubMed  Google Scholar 

  • Stevenson MM, Gros P, Olivier M, Fortin A, Serghides L (2010) Cerebral malaria: human versus mouse studies. Trends Parasitol 26:274–275

    PubMed  Google Scholar 

  • Stoelcker B, Hehlgans T, Weigl K, Bluethmann H, Grau GE et al (2002) Requirement for tumor necrosis factor receptor 2 expression on vascular cells to induce experimental cerebral malaria. Infect Immun 70:5857–5859

    CAS  PubMed  Google Scholar 

  • Togbe D, Schofield L, Grau GE, Schnyder B, Boissay V et al (2007) Murine cerebral malaria development is independent of toll-like receptor signaling. Am J Pathol 170:1640–1648

    CAS  PubMed  Google Scholar 

  • Togbe D, de Sousa PL, Fauconnier M, Boissay V, Fick L et al (2008) Both functional LTbeta receptor and TNF receptor 2 are required for the development of experimental cerebral malaria. PLoS One 3:e2608

    PubMed  Google Scholar 

  • Tournamille C, Colin Y, Cartron JP, Le Van Kim C (1995) Disruption of a GATA motif in the Duffy gene promoter abolishes erythroid gene expression in Duffy-negative individuals. Nat Genet 10:224–228

    CAS  PubMed  Google Scholar 

  • van den Steen PE, Deroost K, Van Aelst I, Geurts N, Martens E et al (2008) CXCR3 determines strain susceptibility to murine cerebral malaria by mediating T lymphocyte migration toward IFN-gamma-induced chemokines. Eur J Immunol 38:1082–1095

    PubMed  Google Scholar 

  • van der Heyde HC, Pepper B, Batchelder J, Cigel F, Weidanz WP (1997) The time course of selected malarial infections in cytokine-deficient mice. Exp Parasitol 85:206–213

    PubMed  Google Scholar 

  • van der Heyde HC, Nolan J, Combes V, Gramaglia I, Grau GE (2006) A unified hypothesis for the genesis of cerebral malaria: sequestration, inflammation and hemostasis leading to microcirculatory dysfunction. Trends Parasitol 22:503–508

    PubMed  Google Scholar 

  • Verra F, Mangano VD, Modiano D (2009) Genetics of susceptibility to Plasmodium falciparum: from classical malaria resistance genes towards genome-wide association studies. Parasite Immunol 31:234–253

    CAS  PubMed  Google Scholar 

  • Weatherall DJ, Miller LH, Baruch DI, Marsh K, Doumbo OK et al (2002) Malaria and the red cell. Hematology Am Soc Hematol Educ Program 2002:35–57

    Google Scholar 

  • White NJ, Turner GD, Medana IM, Dondorp AM, Day NP (2010) The murine cerebral malaria phenomenon. Trends Parasitol 26:11–15

    PubMed  Google Scholar 

  • Williams TN, Maitland K, Bennett S, Ganczakowski M, Peto TE et al (1996) High incidence of malaria in alpha-thalassaemic children. Nature 383:522–525

    CAS  PubMed  Google Scholar 

  • Wunderlich F, Mossmann H, Helwig M, Schillinger G (1988) Resistance to Plasmodium chabaudi in B10 mice: influence of the H-2 complex and testosterone. Infect Immun 56:2400–2406

    CAS  PubMed  Google Scholar 

  • Yanez DM, Manning DD, Cooley AJ, Weidanz WP, van der Heyde HC (1996) Participation of lymphocyte subpopulations in the pathogenesis of experimental murine cerebral malaria. J Immunol 157:1620–1624

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Foote.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Longley, R., Smith, C., Fortin, A. et al. Host resistance to malaria: using mouse models to explore the host response. Mamm Genome 22, 32–42 (2011). https://doi.org/10.1007/s00335-010-9302-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-010-9302-6

Keywords

Navigation