Mammalian Genome

, Volume 22, Issue 1–2, pp 130–138 | Cite as

Human and chicken TLR pathways: manual curation and computer-based orthology analysis

  • Marc Gillespie
  • Veronica Shamovsky
  • Peter D’Eustachio


The innate immune responses mediated by Toll-like receptors (TLR) provide an evolutionarily well-conserved first line of defense against microbial pathogens. In the Reactome Knowledgebase we previously integrated annotations of human TLR molecular functions with those of over 4000 other human proteins involved in processes such as adaptive immunity, DNA replication, signaling, and intermediary metabolism, and have linked these annotations to external resources, including PubMed, UniProt, EntrezGene, Ensembl, and the Gene Ontology to generate a resource suitable for data mining, pathway analysis, and other systems biology approaches. We have now used a combination of manual expert curation and computer-based orthology analysis to generate a set of annotations for TLR molecular function in the chicken (Gallus gallus). Mammalian and avian lineages diverged approximately 300 million years ago, and the avian TLR repertoire consists of both orthologs and distinct new genes. The work described here centers on the molecular biology of TLR3, the host receptor that mediates responses to viral and other doubled-stranded polynucleotides, as a paradigm for our approach to integrated manual and computationally based annotation and data analysis. It tests the quality of computationally generated annotations projected from human onto other species and supports a systems biology approach to analysis of virus-activated signaling pathways and identification of clinically useful antiviral measures.


  1. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H et al (2000) Gene ontology: tool for the unification of biology. Nat Genet 25:25–29CrossRefPubMedGoogle Scholar
  2. Brownlie R, Zhu J, Allan B, Mutwiri GK, Babiuk LA et al (2009) Chicken TLR21 acts as a functional homologue to mammalian TLR9 in the recognition of CpG oligodeoxynucleotides. Mol Immunol 46:3163–3170CrossRefPubMedGoogle Scholar
  3. Caspi R, Altman T, Dale JM, Dreher K, Fulcher CA et al (2010) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res 38:D473–D479CrossRefPubMedGoogle Scholar
  4. Chen F, Mackey AJ, Stoeckert CJ Jr, Roos DS (2006) OrthoMCL-DB: querying a comprehensive multi-species collection of ortholog groups. Nucleic Acids Res 34:D363–D368CrossRefPubMedGoogle Scholar
  5. Cormican P, Lloyd AT, Downing T, Connell SJ, Bradley D et al (2009) The avian Toll-Like receptor pathway–subtle differences amidst general conformity. Dev Comp Immunol 33:967–973CrossRefPubMedGoogle Scholar
  6. de Matos P, Alcántara R, Dekker A, Ennis M, Hastings J et al (2010) Chemical Entities of Biological Interest: an update. Nucleic Acids Res 38:D249–D254CrossRefPubMedGoogle Scholar
  7. Gene Ontology Consortium (2010) The Gene Ontology in 2010: extensions and refinements. Nucleic Acids Res 38:D331–D335CrossRefGoogle Scholar
  8. He H, Genovese KJ, Nisbet DJ, Kogut MH (2006) Profile of Toll-like receptor expressions and induction of nitric oxide synthesis by Toll-like receptor agonists in chicken monocytes. Mol Immunol 43:783–789CrossRefPubMedGoogle Scholar
  9. He H, Genovese KJ, Nisbet DJ, Kogut MH (2007) Synergy of CpG oligodeoxynucleotide and double-stranded RNA (poly I:C) on nitric oxide induction in chicken peripheral blood monocytes. Mol Immunol 44:3234–3242CrossRefPubMedGoogle Scholar
  10. Higgs R, Cormican P, Cahalane S, Allan B, Lloyd AT et al (2006) Induction of a novel chicken Toll-like receptor following Salmonella enterica serovar Typhimurium infection. Infect Immun 74:1692–1698CrossRefPubMedGoogle Scholar
  11. Higuchi M, Matsuo A, Shingai M, Shida K, Ishii A et al (2008) Combinational recognition of bacterial lipoproteins and peptidoglycan by chicken Toll-like receptor 2 subfamily. Dev Comp Immunol 32:147–155CrossRefPubMedGoogle Scholar
  12. Iqbal M, Philbin VJ, Withanage GS, Wigley P, Beal RK et al (2005) Identification and functional characterization of chicken toll-like receptor 5 reveals a fundamental role in the biology of infection with Salmonella enterica serovar typhimurium. Infect Immun 73:2344–2350CrossRefPubMedGoogle Scholar
  13. Iwasaki A, Medzhitov R (2004) Toll-like receptor control of the adaptive immune responses. Nat Immunol 6:987–995CrossRefGoogle Scholar
  14. Iwasaki A, Medzhitov R (2010) Regulation of adaptive immunity by the innate immune system. Science 327:291–295CrossRefPubMedGoogle Scholar
  15. Kaiser P, Howell J, Fife M, Sadeyen JR, Salmon N et al (2008) Integrated immunogenomics in the chicken: deciphering the immune response to identify disease resistance genes. Dev Biol (Basel) 132:57–66Google Scholar
  16. Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M (2010) KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res 38:D355–D360CrossRefPubMedGoogle Scholar
  17. Karpala AJ, Lowenthal JW, Bean AG (2008) Activation of the TLR3 pathway regulates IFNbeta production in chickens. Dev Comp Immunol 32:435–444CrossRefPubMedGoogle Scholar
  18. Kawai T, Akira S (2005) Pathogen recognition with Toll-like receptors. Curr Opin Immunol 17:338–344CrossRefPubMedGoogle Scholar
  19. Keestra AM, van Putten JP (2008) Unique properties of the chicken TLR4/MD-2 complex: selective lipopolysaccharide activation of the MyD88-dependent pathway. J Immunol 181:4354–4362PubMedGoogle Scholar
  20. Keestra AM, de Zoete MR, van Aubel RA, van Putten JP (2007) The central leucine-rich repeat region of chicken TLR16 dictates unique ligand specificity and species-specific interaction with TLR2. J Immunol 178(11):7110–7119PubMedGoogle Scholar
  21. Keestra AM, de Zoete MR, van Aubel RA, van Putten JP (2008) Functional characterization of chicken TLR5 reveals species-specific recognition of flagellin. Mol Immunol 45:1298–1307CrossRefPubMedGoogle Scholar
  22. Kogut MH, Iqbal M, He H, Philbin V, Kaiser P et al (2005) Expression and function of Toll-like receptors in chicken heterophils. Dev Comp Immunol 29:791–807CrossRefPubMedGoogle Scholar
  23. Kogut MH, Genovese KJ, He H (2007) Flagellin and lipopolysaccharide stimulate the MEK-ERK signaling pathway in chicken heterophils through differential activation of the small GTPases, Ras and Rap1. Mol Immunol 44:1729–1736CrossRefPubMedGoogle Scholar
  24. Leinonen R, Akhtar R, Birney E, Bonfield J, Bower L et al (2010) Improvements to services at the European Nucleotide Archive. Nucleic Acids Res 38:D39–D45CrossRefPubMedGoogle Scholar
  25. Li L, Stoeckert CJ Jr, Roos DS (2003) OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res 13:2178–2189CrossRefPubMedGoogle Scholar
  26. Li F, Thiele I, Jamshidi N, Palsson BØ (2009) Identification of potential pathway mediation targets in Toll-like receptor signaling. PLoS Comp Biol 5:e1000292CrossRefGoogle Scholar
  27. Lynn DJ, Lloyd AT, O’Farrelly C (2003) In silico identification of components of the Toll-like receptor (TLR) signaling pathway in clustered chicken expressed sequence tags (ESTs). Vet Immunol Immunopathol 93:177–184CrossRefPubMedGoogle Scholar
  28. Matthews L, Gopinath G, Gillespie M, Caudy M, Croft D et al (2009) Reactome knowledgebase of human biological pathways and processes. Nucleic Acids Res 37:D619–D622CrossRefPubMedGoogle Scholar
  29. Nerren JR, He H, Genovese K, Kogut MH (2010) Expression of the avian-specific toll-like receptor 15 in chicken heterophils is mediated by gram-negative and gram-positive bacteria, but not TLR agonists. Vet Immunol Immunopathol 136:151–156CrossRefPubMedGoogle Scholar
  30. Oda K, Kitano H (2006) A comprehensive map of the toll-like receptor signaling network. Mol Systems Biol 2:2006.0015Google Scholar
  31. Philbin VJ, Iqbal M, Boyd Y, Goodchild MJ, Beal RK et al (2005) Identification and characterization of a functional, alternatively spliced Toll-like receptor 7 (TLR7) and genomic disruption of TLR8 in chickens. Immunology 114:507–521CrossRefPubMedGoogle Scholar
  32. Roach JC, Glusman G, Rowen L, Kaur A, Purcell MK et al (2005) The evolution of vertebrate Toll-like receptors. Proc Natl Acad Sci U S A 102:9577–9582CrossRefPubMedGoogle Scholar
  33. Schaefer CF, Anthony K, Krupa S, Buchoff J, Day M et al (2009) PID: The Pathway Interaction Database. Nucleic Acids Res 37:D674–D679CrossRefPubMedGoogle Scholar
  34. Schwarz H, Schneider K, Ohnemus A, Lavric M, Kothlow S et al (2007) Chicken toll-like receptor 3 recognizes its cognate ligand when ectopically expressed in human cells. J Interferon Cytokine Res 27:97–101CrossRefPubMedGoogle Scholar
  35. Shinohara H, Yasuda T, Aiba Y, Sanjo H, Hamadate M et al (2005) PKC beta regulates BCR-mediated IKK activation by facilitating the interaction between TAK1 and CARMA1. J Exp Med 202:1423–1431CrossRefPubMedGoogle Scholar
  36. Temperley ND, Berlin S, Paton IR, Griffin DK, Burt DW (2008) Evolution of the chicken Toll-like receptor gene family: a story of gene gain and gene loss. BMC Genomics 9:62CrossRefPubMedGoogle Scholar
  37. Thomas PD, Campbell MJ, Kejariwal A, Mi H, Karlak B et al (2003) PANTHER: a library of protein families and subfamilies indexed by function. Genome Res 13:2129–2141CrossRefPubMedGoogle Scholar
  38. Ulevitch RJ (2004) Therapeutics targeting the innate immune system. Nat Rev Immunol 4:512–520CrossRefPubMedGoogle Scholar
  39. UniProt Consortium (2010) The Universal Protein Resource (UniProt) in 2010. Nucleic Acids Res 38:D142–D148CrossRefGoogle Scholar
  40. Vastrik I, D’Eustachio P, Schmidt E, Gopinath G, Croft D et al (2007) Reactome: a knowledgebase of biological pathways and processes. Genome Biol 8:R39CrossRefPubMedGoogle Scholar
  41. Wheaton S, Lambourne MD, Sarson AJ, Brisbin JT, Mayameei A et al (2007) Molecular cloning and expression analysis of chicken MyD88 and TRIF genes. DNA Seq 18:480–486PubMedGoogle Scholar
  42. Yilmaz A, Shen S, Adelson DL, Xavier S, Zhu JJ (2005) Identification and sequence analysis of chicken Toll-like receptors. Immunogenetics 56:743–753CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Marc Gillespie
    • 1
  • Veronica Shamovsky
    • 2
  • Peter D’Eustachio
    • 2
  1. 1.College of Pharmacy and Allied Health ProfessionsSt. John’s UniversityQueensUSA
  2. 2.NYU School of Medicine – BiochemistryNew YorkUSA

Personalised recommendations