Mammalian Genome

, Volume 22, Issue 1–2, pp 83–90 | Cite as

The role of the Major Histocompatibility Complex in the spread of contagious cancers

Article

Abstract

Major Histocompatibility Complex (MHC) genes play a key role in immune response to infectious diseases, immunosurveillance, and self/nonself recognition. Matching MHC alleles is critical for organ transplantation, while changes in the MHC profile of tumour cells allow effective evasion of the immune response. Two unique cancers have exploited these features to become transmissible. In this review I discuss the functional role of MHC molecules in the emergence and evolution of Devil Facial Tumour Disease (DFTD) and Canine Transmissible Venereal Tumour (CTVT). High levels of genetic diversity at MHC genes play a critical role in protecting populations of vertebrate species from contagious cancer. However, species that have undergone genetic bottlenecks and have lost diversity at MHC genes are at risk of transmissible tumours. Moreover, evolution and selection for tumour variants capable of evading the immune response allow contagious cancers to cross MHC barriers. Transmissible cancers are rare but they can provide unique insights into the genetics and immunology of tumours and organ transplants.

References

  1. Adams EW, Sapp WJ, Carter LP (1981) Cytogenetic observations on the canine venereal tumor in long term culture. Cornell Vet 71:336–346PubMedGoogle Scholar
  2. Algarra I, Cabrera T, Garrido F (2000) The HLA crossroad in tumor immunology. Hum Immunol 61:65–73CrossRefPubMedGoogle Scholar
  3. Algarra I, Garcia-Lora A, Cabrera T, Ruiz-Cabello F, Garrido F (2004) The selection of tumor variants with altered expression of classical and nonclassical MHC Class I molecules: implications for tumor immune escape. Cancer Immunol Immunother 53:904–910CrossRefPubMedGoogle Scholar
  4. Banfield WG, Woke PA, MacKay CM, Cooper HL (1965) Mosquito transmission of a reticulum cell sarcoma of hamsters. Science 148:1239–1240CrossRefPubMedGoogle Scholar
  5. Bradley BA (1991) The role of HLA matching in transplantation. Immunol Lett 29:55–59CrossRefPubMedGoogle Scholar
  6. Brindley DC, Banfield WG (1961) A contagious tumor of the hamster. J Natl Cancer Inst 26:949–957Google Scholar
  7. Bubenik J (2004) MHC Class I down-regulation: tumour escape from immune surveillance? Int J Oncol 25:487-491 (review)Google Scholar
  8. Burnet FM (1957) Cancer—a biological approach. Br Med J 1:841–847CrossRefPubMedGoogle Scholar
  9. Buss LW (1982) Somatic cell parasitism and the evolution of somatic tissue compatibility. Proc Natl Acad Sci USA 79:5337–5341CrossRefPubMedGoogle Scholar
  10. Cabrera T, Lopez-Nevot MA, Gaforio JJ, Ruiz-Cabello F, Garrido F (2003) Analysis of HLA expression in human tumor tissues. Cancer Immunol Immunother 52:1–9PubMedGoogle Scholar
  11. Cohen D, Shalev A, Krup M (1984) Lack of beta 2 microglobulin on the surface of canine transmissible venereal tumor cells. J Natl Cancer Inst 72:395–401PubMedGoogle Scholar
  12. Das U, Das AK (2000) Review of canine transmissible venereal sarcoma. Vet Res Commun 24:545–556CrossRefPubMedGoogle Scholar
  13. Dausset J, Rapaport FT, Colombani J, Feingold N (1965) A leucocyte group and its relationship to tissue histocompatibility in man. Transplantation 3:701–705CrossRefPubMedGoogle Scholar
  14. De Monbreun WA, Goodpasturem EW (1934) An experimental investigation concerning the nature of contagious lymphosarcoma in dogs. Am J Cancer 21:295–321Google Scholar
  15. De Tomaso AW, Nyholm SV, Palmeri KJ, Ishizuka KJ, Ludington WB et al (2005) Isolation and characterization of a protochordate histocompatibility locus. Nature 438:454–459CrossRefPubMedGoogle Scholar
  16. Dingli D, Nowak MA (2006) Cancer biology: infectious tumour cells. Nature 443:35–36CrossRefPubMedGoogle Scholar
  17. Fassati A, Mitchison NA (2010) Testing the theory of immune selection in cancers that break the rules of transplantation. Cancer Immunol Immunother 59:643–651CrossRefPubMedGoogle Scholar
  18. Ferrone S, Marincola FM (1995) Loss of HLA class I antigens by melanoma cells: molecular mechanisms, functional significance and clinical relevance. Immunol Today 16:487–494CrossRefPubMedGoogle Scholar
  19. Garcia-Lora A, Algarra I, Garrido F (2003) MHC class I antigens, immune surveillance, and tumor immune escape. J Cell Physiol 195:346–355CrossRefPubMedGoogle Scholar
  20. Guiler ER (1992) The Tasmanian devil. St David’s Park Publishing, HobartGoogle Scholar
  21. Hsiao YW, Liao KW, Hung SW, Chu RM (2002) Effect of tumor infiltrating lymphocytes on the expression of MHC molecules in canine transmissible venereal tumor cells. Vet Immunol Immunopathol 87:19–27CrossRefPubMedGoogle Scholar
  22. Hsiao YW, Liao KW, Hung SW, Chu RM (2004) Tumor-infiltrating lymphocyte secretion of IL-6 antagonizes tumor-derived TGF-beta 1 and restores the lymphokine-activated killing activity. J Immunol 172:1508–1514PubMedGoogle Scholar
  23. Hsiao YW, Liao KW, Chung TF, Liu CH, Hsu CD et al (2008) Interactions of host IL-6 and IFN-gamma and cancer-derived TGF-beta1 on MHC molecule expression during tumor spontaneous regression. Cancer Immunol Immunother 57:1091–1104CrossRefPubMedGoogle Scholar
  24. Isoda T, Ford AM, Tomizawa D, van Delft FW, De Castro DG et al (2009) Immunologically silent cancer clone transmission from mother to offspring. Proc Natl Acad Sci USA 106:17882–17885CrossRefPubMedGoogle Scholar
  25. Johnson C (2006) Australia’s mammal extinctions: a 50000 year history. Cambridge University Press, MelbourneGoogle Scholar
  26. Jones ME, Paetkau D, Gefen E, Moritz C (2004) Genetic diversity and population structure of Tasmanian devils, the largest marsupial carnivore. Mol Ecol 13:2197–2209CrossRefPubMedGoogle Scholar
  27. Kauffman HM, McBride MA, Cherikh WS, Spain PC, Delmonico FL (2002) Transplant tumor registry: donors with central nervous system tumors1. Transplantation 73:579–582CrossRefPubMedGoogle Scholar
  28. Kelley J, Walter L, Trowsdale J (2005) Comparative genomics of major histocompatibility complexes. Immunogenetics 56:683–695CrossRefPubMedGoogle Scholar
  29. Kennedy LJ, Angles JM, Barnes A, Carmichael LE, Radford AD et al (2007a) DLA-DRB1, DQA1, and DQB1 alleles and haplotypes in North American Gray Wolves. J Hered 98:491–499CrossRefPubMedGoogle Scholar
  30. Kennedy LJ, Barnes A, Short A, Brown JJ, Lester S et al. (2007b) Canine DLA diversity: 1. New alleles and haplotypes. Tissue Antigens 69 Suppl 1:272-288Google Scholar
  31. Kurbel S, Plestina S, Vrbanec D (2007) Occurrence of the acquired immunity in early vertebrates due to danger of transmissible cancers similar to canine venereal tumors. Med Hypotheses 68:1185–1186CrossRefPubMedGoogle Scholar
  32. Lakkis FG, Dellaporta SL, Buss LW (2008) Allorecognition and chimerism in an invertebrate model organism. Organogenesis 4:236–240CrossRefPubMedGoogle Scholar
  33. LaRosa DF, Rahman AH, Turka LA (2007) The innate immune system in allograft rejection and tolerance. J Immunol 178:7503–7509PubMedGoogle Scholar
  34. Lefebvre S, Antoine M, Uzan S, McMaster M, Dausset J et al (2002) Specific activation of the non-classical class I histocompatibility HLA-G antigen and expression of the ILT2 inhibitory receptor in human breast cancer. J Pathol 196:266–274CrossRefPubMedGoogle Scholar
  35. Liao KW, Lin ZY, Pao HN, Kam SY, Wang FI et al (2003) Identification of canine transmissible venereal tumor cells using in situ polymerase chain reaction and the stable sequence of the long interspersed nuclear element. J Vet Diagn Invest 15:399–406PubMedGoogle Scholar
  36. Ljunggren HG, Karre K (1990) In search of the ‘missing self’: MHC molecules and NK cell recognition. Immunol Today 11:237–244CrossRefPubMedGoogle Scholar
  37. Loh R, Bergfeld J, Hayes D, O’Hara A, Pyecroft S et al (2006a) The pathology of devil facial tumor disease (DFTD) in Tasmanian Devils (Sarcophilus harrisii). Vet Pathol 43:890–895CrossRefPubMedGoogle Scholar
  38. Loh R, Hayes D, Mahjoor A, O’Hara A, Pyecroft S et al (2006b) The immunohistochemical characterization of devil facial tumor disease (DFTD) in the Tasmanian Devil (Sarcophilus harrisii). Vet Pathol 43:896–903CrossRefPubMedGoogle Scholar
  39. McCallum H (2008) Tasmanian devil facial tumour disease: lessons for conservation biology. Trends Ecol Evol 23:631–637CrossRefPubMedGoogle Scholar
  40. McCallum H, Tompkins DM, Jones ME, Lachish S, Marvenek S et al (2007) Distribution and impacts of Tasmanian devil facial tumour disease. EcoHealth 4:318–325CrossRefGoogle Scholar
  41. McKitrick TR, De Tomaso AW (2010) Molecular mechanisms of allorecognition in a basal chordate. Semin Immunol 22:34–38CrossRefPubMedGoogle Scholar
  42. Moffett A, Loke C (2006) Immunology of placentation in eutherian mammals. Nat Rev Immunol 6:584–594CrossRefPubMedGoogle Scholar
  43. Murchison EP (2009) Clonally transmissible cancers in dogs and Tasmanian devils. Oncogene 27:S19–S30CrossRefGoogle Scholar
  44. Murchison EP, Tovar C, Hsu A, Bender HS, Kheradpour P et al (2010) The Tasmanian devil transcriptome reveals Schwann cell origins of a clonally transmissible cancer. Science 327:84–87CrossRefPubMedGoogle Scholar
  45. Murgia C, Pritchard JK, Kim SY, Fassati A, Weiss RA (2006) Clonal origin and evolution of a transmissible cancer. Cell 126:477–487CrossRefPubMedGoogle Scholar
  46. Nicotra ML, Powell AE, Rosengarten RD, Moreno M, Grimwood J et al (2009) A hypervariable invertebrate allodeterminant. Curr Biol 19:583–589CrossRefPubMedGoogle Scholar
  47. Novinski MA (1876) Zur Frage uber die Impfung der Krebsigen Gescgwulste. Zentralbl Med Wissensch 14:790–791Google Scholar
  48. O’Brien SJ, Roelke ME, Marker L, Newman A, Winkler CA et al (1985) Genetic basis for species vulnerability in the cheetah. Science 227:1428–1434CrossRefPubMedGoogle Scholar
  49. O’Neill ID (2010) Tasmanian devil facial tumor disease: insights into reduced tumor surveillance from an unusual malignancy. Int J Cancer 127(7):1637–1642PubMedGoogle Scholar
  50. Obendorf D, McGlashan ND (2008) Research priorities in the Tasmanian devil facial tumour debate. Eur J Oncol 13:229–238Google Scholar
  51. Pangault C, Amiot L, Caulet-Maugendre S, Brasseur F, Burtin F et al (1999) HLA-G protein expression is not induced during malignant transformation. Tissue Antigens 53:335–346CrossRefPubMedGoogle Scholar
  52. Pearse AM, Swift K (2006) Allograft theory: transmission of devil facial-tumour disease. Nature 439:549CrossRefPubMedGoogle Scholar
  53. Pyecroft S, Pearse AM, Loh R, Swift K, Belov K et al (2007) Towards a case definition for Devil Facial Tumour Disease: what is it? EcoHealth 4:346–351CrossRefGoogle Scholar
  54. Radwan J, Biedrzycka A, Babik W (2010) Does reduced MHC diversity decrease viability of vertebrate populations? Biol Conserv 143:537–544CrossRefGoogle Scholar
  55. Rebbeck CA, Thomas R, Breen M, Leroi AM, Burt A (2009) Origins and evolution of a transmissible cancer. Evolution 63:2340–2349CrossRefPubMedGoogle Scholar
  56. Rosa SF, Powell AE, Rosengarten RD, Nicotra ML, Moreno MA et al (2010) Hydractinia allodeterminant alr1 resides in an immunoglobulin superfamily-like gene complex. Curr Biol 20:1122–1127CrossRefPubMedGoogle Scholar
  57. Rust JH (1949) Transmissible lymphosarcoma in the dog. J Am Vet Med Assoc 114:10–14PubMedGoogle Scholar
  58. Scanlon EF, Hawkins RA, Fox WW, Smith WS (1965) Fatal homotransplanted melanoma. Cancer 18:782–789CrossRefPubMedGoogle Scholar
  59. Siddle HV, Kreiss A, Eldridge MD, Noonan E, Clarke CJ et al (2007) Transmission of a fatal clonal tumor by biting occurs due to depleted MHC diversity in a threatened carnivorous marsupial. Proc Natl Acad Sci USA 104(41):16221–16226CrossRefPubMedGoogle Scholar
  60. Siddle H, Deakin J, Coggill P, Hart E, Cheng Y et al (2009) MHC-linked and un-linked class I genes in the wallaby. BMC Genomics 10:310CrossRefPubMedGoogle Scholar
  61. Siddle HV, Marzec J, Cheng Y, Jones M, Belov K (2010) MHC gene copy number variations in Tasmanian devils: implications for the spread of a contagious cancer. Proc Biol Sci 277(1690):2001–2006CrossRefPubMedGoogle Scholar
  62. Snell GD (1953) The genetics of transplantation. J Natl Cancer Inst 14:691-700; discussion 701-694Google Scholar
  63. Stoner DS, Weissman IL (1996) Somatic and germ cell parasitism in a colonial ascidian: possible role for a highly polymorphic allorecognition system. Proc Natl Acad Sci USA 93:15254–15259CrossRefPubMedGoogle Scholar
  64. Thomas L (1959) Cellular and humoral aspects of the hypersensitive states. Hoeber-Harper, New YorkGoogle Scholar
  65. Ugurel S, Reinhold U, Tilgen W (2002) HLA-G in melanoma: a new strategy to escape from immunosurveillance? Onkologie 25:129–134CrossRefPubMedGoogle Scholar
  66. Vincent MD (2010) The animal within: carcinogenesis and the clonal evolution of cancer cells are speciation events sensu stricto. Evolution 64:1173–1183CrossRefPubMedGoogle Scholar
  67. Warrens AN, Lombardi G, Lechler RI (1994) Presentation and recognition of major and minor histocompatibility antigens. Transpl Immunol 2:103–107CrossRefPubMedGoogle Scholar
  68. Wood GM, Kreiss A, Belov K, Siddle HV, Obendorf DL et al (2007) The immune response of the Tasmanian devil (Sarcophilus harrisii) and Devil Facial Tumour Disease. EcoHealth 4(3):338–345CrossRefGoogle Scholar
  69. Wright DH, Peel S, Cooper EH, Huges DT (1970) Transmissible venereal sarcoma of dogs. A histochemical and chromosomal analysis of tumours in Uganda. Eur J Clin Biol Res 15:155Google Scholar
  70. Yang TJ, Chandler JP, Dunne-Anway S (1987) Growth stage dependent expression of MHC antigens on the canine transmissible venereal sarcoma. Br J Cancer 55:131–134CrossRefPubMedGoogle Scholar
  71. Zitvogel L, Tesniere A, Kroemer G (2006) Cancer despite immunosurveillance: immunoselection and immunosubversion. Nat Rev Immunol 6:715–727CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Faculty of Veterinary Science, RMC Gunn B19, University of SydneySydneyAustralia

Personalised recommendations