Skip to main content
Log in

Comparative studies of skeletal muscle proteome and transcriptome profilings between pig breeds

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

Two genetically different pig breeds, the Korean native pig (KNP) and the Western meat-producing Landrace, show breed-specific traits in stress responsiveness (stress hormone levels), growth performance (live weight), and meat quality (intramuscular fat content). We analyzed expression levels within the proteome and transcriptome of the longissimus muscles of both breeds using two-dimensional electrophoresis (2-DE) and microarray analysis. We constructed a porcine proteome database focused mainly on mitochondrial proteins. In total, 101 proteins were identified, of which approximately 60% were metabolic enzymes and mitochondrial proteins. We screened several proteins and genes related to stress and metabolism in skeletal muscles using comparative analysis. In particular, three stress-related genes (heat shock protein β-1, stress-70 protein, and heat shock 70 kDa protein) were more highly expressed in the Landrace than in the KNP breed. Six metabolism-related genes (peroxisome proliferative activated receptor α, short-chain acyl-CoA dehydrogenase, succinate dehydrogenase, NADH-ubiquinone oxidoreductase, glycerol-3-phosphate dehydrogenase, and sterol regulatory element binding protein-1c), all of which are involved in energy and lipid metabolism, were more highly expressed at the protein or mRNA level in the KNP breed. These data may reflect the breed dependence of traits such as stress responsiveness, growth performance, and meat quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • AOAC (1996) Official methods of analysis. AOAC International, Gaithersburg, MD

    Google Scholar 

  • Becker BA, Nienaber JA, Christenson RK, Manak RC, DeShazer JA et al (1985) Peripheral concentrations of cortisol as an indicator of stress in the pig. Am J Vet Res 46:1034–1038

    CAS  PubMed  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57:289–300

    Google Scholar 

  • Bernard C, Cassar-Malek I, Cunff ML, Dubroeucq H, Renand G et al (2007) New indicators of beef sensory quality revealed by expression of specific genes. J Agric Food Chem 55:5229–5237

    Article  CAS  PubMed  Google Scholar 

  • Bhala A, Willi SM, Rinaldo P, Bennett MJ, Schmidt-Sommerfeld E et al (1995) Clinical and biochemical characterization of short-chain acyl-coenzyme A dehydrogenase deficiency. J Pediatr 126:910–915

    Article  CAS  PubMed  Google Scholar 

  • Bonnet M, Faulconnier Y, Leroux C, Jurie C, Cassar-Malek I et al (2007) Glucose-6-phosphate dehydrogenase and leptin are related to marbling differences among Limousin and Angus or Japanese Black × Angus steers. J Anim Sci 85:2882–2894

    Article  CAS  PubMed  Google Scholar 

  • Depreux FF, Grant AL, Gerrard DE (2002) Influence of halothane genotype and body-weight on myosin heavy chain composition in pig muscle as related to meat quality. Livest Prod Sci 73:265–273

    Article  Google Scholar 

  • Essen-Gustavsson B, Karlsson A, Lundstrom K, Enfalt AC (1994) Intramuscular fat and muscle fibre lipid contents in halothane-gene-free pigs fed high or low protein diets and its relation to meat quality. Meat Sci 38:269–277

    Article  CAS  Google Scholar 

  • Hocquette JF, Brandstetter AM (2002) Common practice in molecular biology may introduce statistical bias and misleading biological interpretation. J Nutr Biochem 13:370–377

    Article  CAS  PubMed  Google Scholar 

  • Gibson BW (2005) The human mitochondrial proteome: oxidative stress, protein modifications and oxidative phosphorylation. Int J Biochem Cell Biol 37:927–934

    Article  CAS  PubMed  Google Scholar 

  • Guillet-Deniau I, Pichard AL, Kone A, Esnous C, Nieruchalski M et al (2004) Glucose induces de novo lipogenesis in rat muscle satellite cells through a sterol-regulatory-element-binding-protein-1c-dependent pathway. J Cell Sci 177:1937–1944

    Article  Google Scholar 

  • Hocquette HF, Ortigues-Marty I, Pethick DW, Herpin P, Fernandez X (1998) Nutritional and hormonal regulation of energy metabolism in skeletal muscles of meat-producing animals. Livest Prod Sci 56:115–143

    Article  Google Scholar 

  • Horwitz J (1992) Alpha crystalline can function as a molecular chaperones. Proc Natl Acad Sci U S A 89:10449–10453

    Article  CAS  PubMed  Google Scholar 

  • Jakob UM, Gaestel KE, Buchner J (1993) Small heat shock proteins are molecular chaperones. J Biol Chem 268:1517–1520

    CAS  PubMed  Google Scholar 

  • Jensen-Waern M, Nyberg L (1993) Valuable indicators of physical stress in porcine plasma. J Vet Med A40:321–327

    Google Scholar 

  • Jin SK, Kim CW, Song YM, Jang WH, Kim YB et al (2001) Physicochemical characteristics of longissimus muscle between the Korean native pig and Landrace. Korean J Food Sci Ani Resour 21:142–148

    Google Scholar 

  • Jurie C, Cassar-Malek K, Bonnet M, Leroux C, Bauchart D et al (2007) Adipocyte fatty acid-binding protein and mitochondrial enzyme activities in muscles as relevant indicators of marbling in cattle. J Anim Sci 85:2660–2669

    Article  CAS  PubMed  Google Scholar 

  • Kauffman RG, Eikelenboom G, van der Wal PG, Engel B, Zaar M (1986) A comparison of methods to estimate water-holding capacity in post-rigor porcine muscle. Meat Sci 18:307–322

    Article  Google Scholar 

  • Kim NK, Lim JH, Song MJ, Kim OH, Park BY et al (2008a) Comparisons of longissimus muscle metabolic enzymes and muscle fiber types in Korean and western pig breeds. Meat Sci 78:455–460

    Article  CAS  Google Scholar 

  • Kim NK, Cho S, Lee SH, Park HR, Lee CS et al (2008b) Proteins in longissimus muscle of Korean native cattle and their relationship to meat quality. Meat Sci 80:1068–1073

    Article  CAS  Google Scholar 

  • Kim NK, Cho YM, Jung YS, Kim GS, Heo KN et al (2009) Gene expression profiling of metabolism-related genes between top round and loin muscle of Korean cattle (Hanwoo). J Agric Food Chem 57:10898–10903

    Article  CAS  PubMed  Google Scholar 

  • Knowlton AA (1997) Heart shock proteins and the cardiovascular system. Kluwer Academic Publishers, Norwell, MA, pp 1–227

    Google Scholar 

  • Lan YH, McKeith FK, Novakofski J, Carr TR (1993) Carcass and muscle characteristics of Yorkshire, Meishan, Yorkshire × Meishan, Meishan × Yorkshire, Fengjing × Yorkshire, and Minzhu × Yorkshire pigs. J Anim Sci 71:3344–3349

    CAS  PubMed  Google Scholar 

  • Lefebvre P, Chinetti G, Fruchart JC, Staels B (2006) Sorting out the roles of PPARa in energy metabolism and vascular homeostasis. J Clin Invest 116:571–580

    Article  CAS  PubMed  Google Scholar 

  • Lewis MJ, Pelham HR (1985) Involvement of ATP in the nuclear functions of the 70 kd heat shock proteins. EMBO J 4:3137–3143

    CAS  PubMed  Google Scholar 

  • Lin CS, Hsu CW (2005) Differentially transcribed genes in skeletal muscle of Duroc and Taoyuan pigs. J Anim Sci 83:2075–2086

    CAS  PubMed  Google Scholar 

  • Mortz E, Krogh TN, Vorum H, Gorg A (2001) Improved silver staining protocols for high sensitivity protein identification using matrix-assisted laser desorption/ionization-time of flight analysis. Proteomics 1:1359–1363

    Article  CAS  PubMed  Google Scholar 

  • Moseley PL (1997) Heat shock proteins and heat adaptation of the whole organism. J Appl Physiol 83:1413–1417

    CAS  PubMed  Google Scholar 

  • Muoio DM, Koves TR (2007) Skeletal muscle adaptation to fatty acid depends on coordinated actions of the PPARs and PGC1 alpha: implications for metabolic disease. Appl Physiol Nutr Metab 32:874–883

    Article  CAS  PubMed  Google Scholar 

  • Oliver MA, Gispert M, Diestre A (1993) The effects of breed and halothane sensitivity on pig meat quality. Meat Sci 35:105–118

    Article  CAS  Google Scholar 

  • Pethick DW, D’Souza DN, Dunshea FR, Harper GS (2005) Fat metabolism and regional distribution in ruminants and pigs-influences of genetics and nutrition. Rec Adv Anim Nutr Aust 15:39–45

    Google Scholar 

  • Raghow R, Yellaturu C, Deng X, Park EA, Elam MB (2008) SREBPs: the crossroads of physiological and pathological lipid homeostasis. Trends Endocrinol Metab 19:65–73

    Article  CAS  PubMed  Google Scholar 

  • Ruusunen M, Puolanne E (1997) Comparison of histochemical properties of different pig breeds. Meat Sci 45:119–125

    Article  CAS  Google Scholar 

  • Smyth GK (2005) Limma: linear models for microarray data. In: Gentleman R, Carey V, Dudoit S, Irizarry R, Huber W (eds) Bioinformatics and computational biology solutions using R and bioconductor. Springer, New York

    Google Scholar 

  • Sudre K, Cassar-Malek I, Listrat A, Ueda Y, Leroux C et al (2005) Biochemical and transcriptomic analyses of two bovine skeletal muscles in Charolais bulls divergently selected for muscle growth. Meat Sci 70:267–277

    Article  CAS  Google Scholar 

  • Wheeler TL, Shackelford SD, Koohmaraie M (2000) Relationship of beef longissimus tenderness classes to tenderness of gluteus medius, semimembranosus, and biceps femoris. J Anim Sci 78:2856–2861

    CAS  PubMed  Google Scholar 

  • White BR, Lan YH, McKeith FK, Novakofski J, Wheeler MB et al (1995) Growth and body composition of Meishan and Yorkshire barrows and gilts. J Anim Sci 73:738–749

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant (Code 200901FHT010204407) from the BioGreen 21 Program, Rural Development Administration, and partly by Energy through the Bio-Food & Drug Research Center at Konkuk University, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Soo Lee.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 806 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, NK., Park, HR., Lee, HC. et al. Comparative studies of skeletal muscle proteome and transcriptome profilings between pig breeds. Mamm Genome 21, 307–319 (2010). https://doi.org/10.1007/s00335-010-9264-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-010-9264-8

Keywords

Navigation