Skip to main content

Advertisement

Log in

Deficiencies in the region syntenic to human 21q22.3 cause cognitive deficits in mice

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

Copy-number variation in the human genome can be disease-causing or phenotypically neutral. This type of genetic rearrangement associated with human chromosome 21 (Hsa21) underlies partial Monosomy 21 and Trisomy 21. Mental retardation is a major clinical manifestation of partial Monosomy 21. To model this human chromosomal deletion disorder, we have generated novel mouse mutants carrying heterozygous deletions of the 2.3- and 1.1-Mb segments on mouse chromosome 10 (Mmu10) and Mmu17, respectively, which are orthologous to the regions on human 21q22.3, using Cre/loxP-mediated chromosome engineering. Alterations of the transcriptional levels of genes within the deleted intervals reflect gene-dosage effects in the mutant mice. The analysis of cognitive behaviors shows that the mutant mice carrying the deletion on either Mmu10 or Mmu17 are impaired in learning and memory. Therefore, these mutants represent mouse models for Monosomy 21-associated mental retardation, which can serve as a powerful tool to study the molecular mechanism underlying the clinical phenotype and should facilitate efforts to identify the haploinsufficient causative genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adams DJ, Biggs PJ, Cox T, Davies R, van der Weyden L et al (2004) Mutagenic insertion and chromosome engineering resource (MICER). Nat Genet 36:867–871

    Article  CAS  PubMed  Google Scholar 

  • Adams DJ, Dermitzakis ET, Cox T, Smith J, Davies R et al (2005) Complex haplotypes, copy number polymorphisms and coding variation in two recently divergent mouse strains. Nat Genet 37:532–536

    Article  CAS  PubMed  Google Scholar 

  • Austin CP, Battey JF, Bradley A, Bucan M, Capecchi M et al (2004) The knockout mouse project. Nat Genet 36:921–924

    Article  CAS  PubMed  Google Scholar 

  • Balogh SA, Radcliffe RA, Logue SF, Wehner JM (2002) Contextual and cued fear conditioning in C57BL/6J and DBA/2J mice: context discrimination and the effects of retention interval. Behav Neurosci 116:947–957

    Article  PubMed  Google Scholar 

  • Barnicoat AJ, Bonneau JL, Boyd E, Docherty Z, Fennell SJ et al (1996) Down syndrome with partial duplication and del (21) syndrome: study protocol and call for collaboration. Study I: clinical assessment. Clin Genet 49:20–27

    CAS  PubMed  Google Scholar 

  • Bartsch O, Petersen MB, Stuhlmann I, Mau G, Frantzen M et al (1994) “Compensatory” uniparental disomy of chromosome 21 in two cases. J Med Genet 31:534–540

    Article  CAS  PubMed  Google Scholar 

  • Besson V, Brault V, Duchon A, Togbe D, Bizot JC et al (2007) Modeling the monosomy for the telomeric part of human chromosome 21 reveals haploinsufficient genes modulating the inflammatory and airway responses. Hum Mol Genet 16:2040–2052

    Article  CAS  PubMed  Google Scholar 

  • Bradley A (1987) Production and analysis of chimeric mice. In: Robertson E (ed) Teratocarcinomas and embryonic stem cells—a practical approach. IRL Press, Oxford, pp 113–151

    Google Scholar 

  • Bradley A, Zheng B, Liu P (1998) Thirteen years of manipulating the mouse genome: a personal history. Int J Dev Biol 42:943–950

    CAS  PubMed  Google Scholar 

  • Chan W, Costantino N, Li R, Lee SC, Su Q et al (2007) A recombineering based approach for high-throughput conditional knockout targeting vector construction. Nucleic Acids Res 35:e64

    Article  PubMed  Google Scholar 

  • Chettouh Z, Croquette MF, Delobel B, Gilgenkrants S, Leonard C et al (1995) Molecular mapping of 21 features associated with partial monosomy 21: involvement of the APP-SOD1 region. Am J Hum Genet 57:62–71

    CAS  PubMed  Google Scholar 

  • Clapcote SJ, Roder JC (2004) Survey of embryonic stem cell line source strains in the water maze reveals superior reversal learning of 129S6/SvEvTac mice. Behav Brain Res 152:35–48

    PubMed  Google Scholar 

  • Clapcote SJ, Lazar NL, Bechard AR, Roder JC (2005) Effects of the rd1 mutation and host strain on hippocampal learning in mice. Behav Genet 35:591–601

    Article  PubMed  Google Scholar 

  • Crawley JN (2000) Of unicorns and chimeras. In: What’s wrong with my mouse? Wiley-Liss, New York, p 18, Table 2.1

  • D’Hooge R, Nagels G, Franck F, Bakker CE, Reyniers E et al (1997) Mildly impaired water maze performance in male Fmr1 knockout mice. Neuroscience 76:367–376

    Article  PubMed  Google Scholar 

  • Ehling D, Kennerknecht I, Junge A, Prager B, Exeler R et al (2004) Mild phenotype in two unrelated patients with a partial deletion of 21q22.2–q22.3 defined by FISH and molecular studies. Am J Med Genet A 131:265–272

    Article  PubMed  Google Scholar 

  • Estabrooks LL, Rao KW, Donahue RP, Aylsworth AS (1990) Holoprosencephaly in an infant with a minute deletion of chromosome 21(q22.3). Am J Med Genet 36:306–309

    Article  CAS  PubMed  Google Scholar 

  • Freeman JL, Perry GH, Feuk L, Redon R, McCarroll SA et al (2006) Copy number variation: new insights in genome diversity. Genome Res 16:949–961

    Article  CAS  PubMed  Google Scholar 

  • Gilmore L, Cuskelly M, Jobling A, Smith S (2001) Deletion of 8p: a report of a child with normal intelligence. Dev Med Child Neurol 43:843–846

    Article  CAS  PubMed  Google Scholar 

  • Holland PC, Bouton ME (1999) Hippocampus and context in classical conditioning. Curr Opin Neurobiol 9:195–202

    Article  CAS  PubMed  Google Scholar 

  • Holmes A, Wrenn CC, Harris AP, Thayer KE, Crawley JN (2002) Behavioral profiles of inbred strains on novel olfactory, spatial and emotional tests for reference memory in mice. Genes Brain Behav 1:55–69

    Article  CAS  PubMed  Google Scholar 

  • Huret JL, Leonard C, Chery M, Philippe C, Schafei-Benaissa E et al (1995) Monosomy 21q: two cases of del(21q) and review of the literature. Clin Genet 48:140–147

    CAS  PubMed  Google Scholar 

  • Katzenstein JM, Oghalai JS, Tonini R, Baker D, Haymond J et al (2009) Neurocognitive functioning of a child with partial trisomy 6 and monosomy 21. Neurocase 15:97–100

    Article  PubMed  Google Scholar 

  • Korenberg JR, Kalousek DK, Anneren G, Pulst SM, Hall JG et al (1991) Deletion of chromosome 21 and normal intelligence: molecular definition of the lesion. Hum Genet 87:112–118

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Yu T, Morishima M, Pao A, LaDuca J et al (2007) Duplication of the entire 22.9-Mb human chromosome 21 syntenic region on mouse chromosome 16 causes cardiovascular and gastrointestinal abnormalities. Hum Mol Genet 16:1359–1366

    Article  CAS  PubMed  Google Scholar 

  • Lindsay EA, Botta A, Jurecic V, Carattini-Rivera S, Cheah YC et al (1999) Congenital heart disease in mice deficient for the DiGeorge syndrome region. Nature 401:379–383

    CAS  PubMed  Google Scholar 

  • Lindsay EA, Vitelli F, Su H, Morishima M, Huynh T et al (2001) Tbx1 haploinsufficieny in the DiGeorge syndrome region causes aortic arch defects in mice. Nature 410:97–101

    Article  CAS  PubMed  Google Scholar 

  • Logue SF, Paylor R, Wehner JM (1997) Hippocampal lesions cause learning deficits in inbred mice in the Morris water maze and conditioned-fear task. Behav Neurosci 111:104–113

    Article  CAS  PubMed  Google Scholar 

  • Lu YM, Jia Z, Janus C, Henderson JT, Gerlai R et al (1997) Mice lacking metabotropic glutamate receptor 5 show impaired learning and reduced CA1 long-term potentiation (LTP) but normal CA3 LTP. J Neurosci 17:5196–5205

    CAS  PubMed  Google Scholar 

  • Lyle R, Bena F, Gagos S, Gehrig C, Lopez G et al (2009) Genotype-phenotype correlations in Down syndrome identified by array CGH in 30 cases of partial trisomy and partial monosomy chromosome 21. Eur J Hum Genet 17:454–466

    Article  CAS  PubMed  Google Scholar 

  • Magin TM, McWhir J, Melton DW (1992) A new mouse embryonic stem cell line with good germ line contribution and gene targeting frequency. Nucleic Acids Res 20:3795–3796

    Article  Google Scholar 

  • McIlwain KL, Merriweather MY, Yuva-Paylor LA, Paylor R (2001) The use of behavioral test batteries: effects of training history. Physiol Behav 73:705–717

    Article  CAS  PubMed  Google Scholar 

  • Merscher S, Funke B, Epstein JA, Heyer J, Puech A et al (2001) TBX1 is responsible for cardiovascular defects in velo-cardio-facial/DiGeorge syndrome. Cell 104:619–629

    Article  CAS  PubMed  Google Scholar 

  • Nielsen F, Tranebjaerg L (1984) A case of partial monosomy 21q22.2 associated with Rieger’s syndrome. J Med Genet 21:218–221

    Article  CAS  PubMed  Google Scholar 

  • Phillips RG, LeDoux JE (1992) Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav Neurosci 106:274–285

    Article  CAS  PubMed  Google Scholar 

  • Rinchik EM (2000) Developing genetic reagents to facilitate recovery, analysis, and maintenance of mouse mutations. Mamm Genome 11:489–499

    Article  CAS  PubMed  Google Scholar 

  • Rinchik EM, Russell LB (1990) In: Davies K, Tilghman S (eds) Genome analysis. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 121–158

    Google Scholar 

  • Rosa EF, Takahashi S, Aboulafia J, Nouailhetas VL, Oliveira MG (2007) Oxidative stress induced by intense and exhaustive exercise impairs murine cognitive function. J Neurophysiol 98:1820–1826

    Article  PubMed  Google Scholar 

  • Sarnyai Z, Sibille EL, Pavlides C, Fenster RJ, McEwen BS et al (2000) Impaired hippocampal-dependent learning and functional abnormalities in the hippocampus in mice lacking serotonin(1A) receptors. Proc Natl Acad Sci USA 97:14731–14736

    Article  CAS  PubMed  Google Scholar 

  • Sebat J, Lakshmi B, Troge J, Alexander J, Young J et al (2004) Large-scale copy number polymorphism in the human genome. Science 305:525–528

    Article  CAS  PubMed  Google Scholar 

  • Testa G, Schaft J, van der Hoeven F, Glaser S, Anastassiadis K et al (2004) A reliable lacZ expression reporter cassette for multipurpose, knockout-first alleles. Genesis 38:151–158

    Article  CAS  PubMed  Google Scholar 

  • Theodoropoulos DS, Cowan JM, Elias ER, Cole C (1995) Physical findings in 21q22 deletion suggest critical region for 21q-phenotype in q22. Am J Med Genet 59:161–163

    Article  CAS  PubMed  Google Scholar 

  • Tsai TF, Jiang YH, Bressler J, Armstrong D, Beaudet AL (1999) Paternal deletion from Snrpn to Ube3a in the mouse causes hypotonia, growth retardation and partial lethality and provides evidence for a gene contributing to Prader-Willi syndrome. Hum Mol Genet 8:1357–1364

    Article  CAS  PubMed  Google Scholar 

  • Valero R, Marfany G, Gil-Benso R, Ibanez MA, Lopez-Pajares I et al (1999) Molecular characterisation of partial chromosome 21 aneuploidies by fluorescent PCR. J Med Genet 36:694–699

    CAS  PubMed  Google Scholar 

  • Walz K, Caratini-Rivera S, Bi W, Fonseca P, Mansouri DL et al (2003) Modeling del(17)(p11.2p11.2) and dup(17)(p11.2p11.2) contiguous gene syndromes by chromosome engineering in mice: phenotypic consequences of gene dosage imbalance. Mol Cell Biol 23:3646–3655

    Article  CAS  PubMed  Google Scholar 

  • Wurst W (2005) Mouse geneticists need European strategy too. Nature 433:13

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto Y, Ogasawara N, Gotoh A, Komiya H, Nakai H et al (1979) A case of 21q-syndrome with normal SOD-1 activity. Hum Genet 48:321–327

    Article  CAS  PubMed  Google Scholar 

  • Yu YE, Morishima M, Pao A, Wang DY, Wen XY et al (2006) A deficiency in the region homologous to human 17q21.33–q23.2 causes heart defects in mice. Genetics 173:297–307

    Article  CAS  PubMed  Google Scholar 

  • Zarate YA, Kogan JM, Schorry EK, Smolarek TA, Hopkin RJ (2007) A new case of de novo 11q duplication in a patient with normal development and intelligence and review of the literature. Am J Med Genet A 143:265–270

    PubMed  Google Scholar 

  • Zhang F, Gu W, Hurles ME, Lupski JR (2009) Copy number variation in human health, disease, and evolution. Annu Rev Genomics Hum Genet 10:451–481

    Article  CAS  PubMed  Google Scholar 

  • Zheng B, Mills AA, Bradley A (1999) A system for rapid generation of coat color-tagged knockouts and defined chromosomal rearrangements in mice. Nucleic Acids Res 27:2354–2360

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Paul Szurek and Jeffrey LaDuca for their assistance. This project was supported in part by grants to Y. E. Yu from the Louis Sklarow Memorial Fund, the Jerome Lejeune Foundation, and the NIH (R0HL091519).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Eugene Yu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 111 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, T., Clapcote, S.J., Li, Z. et al. Deficiencies in the region syntenic to human 21q22.3 cause cognitive deficits in mice. Mamm Genome 21, 258–267 (2010). https://doi.org/10.1007/s00335-010-9262-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-010-9262-x

Keywords

Navigation