Skip to main content
Log in

Assessing the prospects of genome-wide association studies performed in inbred mice

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

The remarkable success in mapping genes linked to a number of disease traits using genome-wide association studies (GWAS) in human cohorts has renewed interest in applying this same technique in model organisms such as inbred laboratory mice. Unlike humans, however, the limited genetic diversity in the ancestry of laboratory mice combined with selection pressure over the past decades have yielded an intricate population genetic structure that can complicate the results obtained from association studies. This problem is further exacerbated by the small number of strains typically used in such studies where multiple spurious associations arise as a result of random chance. We sought to empirically assess the viability of GWAS in inbred mice using hundreds of expression traits for which the true location of the expression quantitative trait locus was known a priori. We then measured transcript abundance levels for these expression traits in 16 classical and 3 wild-derived inbred strains and carried out a genome-wide association scan, demonstrating the low statistical power of such studies and empirically estimating the large extent to which allelic association of transcripts gives rise to spurious associations. We provide evidence illustrating that in a large fraction of cases, the marker with the most significant p values fails to map to the location of the true eQTL. Finally, we provide experimental support for hundreds of traits, and that combining linkage analysis with association mapping provides significant increases in statistical power over a stand-alone GWAS as well as significantly higher mapping resolution than either study alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Altshuler D, Daly MJ, Lander ES (2008) Genetic mapping in human disease. Science 322:881–888

    Article  CAS  PubMed  Google Scholar 

  • Cervino AC, Li G, Edwards S, Zhu J, Laurie C et al (2005) Integrating QTL and high-density SNP analyses in mice to identify Insig2 as a susceptibility gene for plasma cholesterol levels. Genomics 86:505–517

    Article  CAS  PubMed  Google Scholar 

  • Cervino AC, Darvasi A, Fallahi M, Mader CC, Tsinoremas NF (2007) An integrated in silico gene mapping strategy in inbred mice. Genetics 175:321–333

    Article  CAS  PubMed  Google Scholar 

  • Churchill GA, Airey DC, Allayee H, Angel JM, Attie AD et al (2004) The Collaborative Cross, a community resource for the genetic analysis of complex traits. Nat Genet 36:1133–1137

    Article  CAS  PubMed  Google Scholar 

  • Darvasi A (2001) In silico mapping of mouse quantitative trait loci. Science 294:2423

    Article  CAS  PubMed  Google Scholar 

  • DiPetrillo K, Tsaih SW, Sheehan S, Johns C, Kelmenson P et al (2004) Genetic analysis of blood pressure in C3H/HeJ and SWR/J mice. Physiol Genomics 17:215–220

    Article  CAS  PubMed  Google Scholar 

  • Doss S, Schadt EE, Drake TA, Lusis AJ (2005) Cis-acting expression quantitative trait loci in mice. Genome Res 15:681–691

    Article  CAS  PubMed  Google Scholar 

  • Emilsson V, Thorleifsson G, Zhang B, Leonardson AS, Zink F et al (2008) Genetics of gene expression and its effect on disease. Nature 452:423–428

    Article  CAS  PubMed  Google Scholar 

  • Flint J, Valdar W, Shifman S, Mott R (2005) Strategies for mapping and cloning quantitative trait genes in rodents. Nat Rev Genet 6:271–286

    Article  CAS  PubMed  Google Scholar 

  • Frazer KA, Eskin E, Kang HM, Bogue MA, Hinds DA et al (2007) A sequence-based variation map of 8.27 million SNPs in inbred mouse strains. Nature 448:1050–1053

    Article  CAS  PubMed  Google Scholar 

  • Grupe A, Germer S, Usuka J, Aud D, Belknap JK et al (2001) In silico mapping of complex disease-related traits in mice. Science 292:1915–1918

    Article  CAS  PubMed  Google Scholar 

  • Guo Y, Lu P, Farrell E, Zhang X, Weller P et al (2007) In silico and in vitro pharmacogenetic analysis in mice. Proc Natl Acad Sci USA 104:17735–17740

    Article  CAS  PubMed  Google Scholar 

  • Hao K, Schadt EE, Storey JD (2008) Calibrating the performance of SNP arrays for whole-genome association studies. PLoS Genet 4:e1000109

    Article  PubMed  Google Scholar 

  • He YD, Dai H, Schadt EE, Cavet G, Edwards SW et al (2003) Microarray standard data set and figures of merit for comparing data processing methods and experiment designs. Bioinformatics 19:956–965

    Article  CAS  PubMed  Google Scholar 

  • Kang HM, Zaitlen NA, Wade CM, Kirby A, Heckerman D et al (2008) Efficient control of population structure in model organism association mapping. Genetics 178:1709–1723

    Article  PubMed  Google Scholar 

  • Laurie CC, Nickerson DA, Anderson AD, Weir BS, Livingston RJ et al (2007) Linkage disequilibrium in wild mice. PLoS Genet 3:e144

    Article  PubMed  Google Scholar 

  • Liao G, Wang J, Guo J, Allard J, Cheng J et al (2004) In silico genetics: identification of a functional element regulating H2-Ealpha gene expression. Science 306:690–695

    Article  CAS  PubMed  Google Scholar 

  • Liu P, Wang Y, Vikis H, Maciag A, Wang D et al (2006) Candidate lung tumor susceptibility genes identified through whole-genome association analyses in inbred mice. Nat Genet 38:888–895

    Article  CAS  PubMed  Google Scholar 

  • Liu P, Vikis H, Lu Y, Wang D, You M (2007) Large-scale in silico mapping of complex quantitative traits in inbred mice. PLoS One 2:e651

    Article  PubMed  Google Scholar 

  • Manenti G, Galvan A, Pettinicchio A, Trincucci G, Spada E et al (2009) Mouse genome-wide association mapping needs linkage analysis to avoid false-positive loci. PLoS Genet 5:e1000331

    Article  PubMed  Google Scholar 

  • McClurg P, Janes J, Wu C, Delano DL, Walker JR et al (2007) Genomewide association analysis in diverse inbred mice: power and population structure. Genetics 176:675–683

    Article  CAS  PubMed  Google Scholar 

  • Park YG, Clifford R, Buetow KH, Hunter KW (2003) Multiple cross and inbred strain haplotype mapping of complex-trait candidate genes. Genome Res 13:118–121

    Article  CAS  PubMed  Google Scholar 

  • Payseur BA, Place M (2007) Prospects for association mapping in classical inbred mouse strains. Genetics 175:1999–2008

    Article  CAS  PubMed  Google Scholar 

  • Petkov PM, Graber JH, Churchill GA, DiPetrillo K, King BL et al (2005) Evidence of a large-scale functional organization of mammalian chromosomes. PLoS Genet 1:e33

    Article  PubMed  Google Scholar 

  • Pletcher MT, McClurg P, Batalov S, Su AI, Barnes SW et al (2004) Use of a dense single nucleotide polymorphism map for in silico mapping in the mouse. PLoS Biol 2:e393

    Article  PubMed  Google Scholar 

  • Schadt EE, Monks SA, Drake TA, Lusis AJ, Che N et al (2003) Genetics of gene expression surveyed in maize, mouse and man. Nature 422:297–302

    Article  CAS  PubMed  Google Scholar 

  • Schadt EE, Molony C, Chudin E, Hao K, Yang X et al (2008) Mapping the genetic architecture of gene expression in human liver. PLoS Biol 6:e107

    Article  PubMed  Google Scholar 

  • Threadgill DW, Hunter KW, Williams RW (2002) Genetic dissection of complex and quantitative traits: from fantasy to reality via a community effort. Mamm Genome 13:175–178

    Article  CAS  PubMed  Google Scholar 

  • Valdar W, Solberg LC, Gauguier D, Burnett S, Klenerman P et al (2006) Genome-wide genetic association of complex traits in heterogeneous stock mice. Nat Genet 38:879–887

    Article  CAS  PubMed  Google Scholar 

  • Wade CM, Daly MJ (2005) Genetic variation in laboratory mice. Nat Genet 37:1175–1180

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Liao G, Usuka J, Peltz G (2005) Computational genetics: from mouse to human? Trends Genet 21:526–532

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Yehya N, Schadt EE, Wang H, Drake TA et al (2006) Genetic and genomic analysis of a fat mass trait with complex inheritance reveals marked sex specificity. PLoS Genet 2:e15

    Article  PubMed  Google Scholar 

  • Wang X, Korstanje R, Higgins D, Paigen B (2004) Haplotype analysis in multiple crosses to identify a QTL gene. Genome Res 14:1767–1772

    Article  CAS  PubMed  Google Scholar 

  • Yalcin B, Willis-Owen SA, Fullerton J, Meesaq A, Deacon RM et al (2004) Genetic dissection of a behavioral quantitative trait locus shows that Rgs2 modulates anxiety in mice. Nat Genet 36:1197–1202

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Bell TA, Churchill GA, Pardo-Manuel de Villena F (2007) On the subspecific origin of the laboratory mouse. Nat Genet 39:1100–1107

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Pressoir G, Briggs WH, Vroh Bi I, Yamasaki M et al (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208

    Article  CAS  PubMed  Google Scholar 

  • Zhao K, Aranzana MJ, Kim S, Lister C, Shindo C et al (2007) An Arabidopsis example of association mapping in structured samples. PLoS Genet 3:e4

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank The Jackson Laboratory, In Vivo Services, for their expert handling of the animals used in this study, and Rosetta Gene Expression Laboratory for the execution of the sample preparation and hybridization experiments. We also thank Eugene Chudin for insightful discourse on the methods and developing the computational tools that enabled this project. WS was supported in part by a fellowship from the Merck Research Laboratories. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Disclosures

The authors have declared that there are no conflicting interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric E. Schadt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 342 kb)

Supplementary material 2 (PDF 364 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, WL., Sieberts, S.K., Kleinhanz, R.R. et al. Assessing the prospects of genome-wide association studies performed in inbred mice. Mamm Genome 21, 143–152 (2010). https://doi.org/10.1007/s00335-010-9249-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-010-9249-7

Keywords

Navigation