Skip to main content
Log in

Serum response factor is essential for the proper development of skin epithelium

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

Mammalian epidermis is a stratified epithelium that serves as a barrier protecting the organism from mechanical stress and dehydration. Previous studies have demonstrated the importance of the actin cytoskeleton in the establishment of a functional skin epithelium. Despite what is known about the actin cytoskeleton in epithelial sheet formation, the molecules important for controlling the actin cytoskeleton during epidermal development have not been determined. Serum response factor (SRF) is a transcription factor that is considered to be an important regulator of the actin cytoskeleton. To examine the role of SRF in the developing mouse epidermis, we have employed gene targeting to ablate Srf in keratinocytes. Conditional inactivation of Srf during the embryonic timepoint leads to a defect in the organization of the epidermis. Immunohistochemical analyses demonstrated a marked loss of the filamentous actin cytoskeleton and E-cadherin localization in epidermis, as well as an aberration in the localization of tight junction proteins. Moreover, impairment of the “inside-out” epidermal barrier was shown. Srf conditional knockout keratinocytes are unable to establish proper intercellular connections or form an epithelial sheet as shown by histological examination and induced keratinocyte differentiation experiments. Our results demonstrate that Srf is essential for the actin-mediated sealing of epithelial cell-cell contacts and the development of functional stratified skin epithelium in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adams CL, Chen YT, Smith SJ, Nelson WJ (1998) Mechanisms of epithelial cell-cell adhesion and cell compaction revealed by high-resolution tracking of E-cadherin-green fluorescent protein. J Cell Biol 142:1105–1119

    Article  CAS  PubMed  Google Scholar 

  • Angres B, Barth A, Nelson WJ (1996) Mechanism for transition from initial to stable cell-cell adhesion: kinetic analysis of E-cadherin-mediated adhesion using a quantitative adhesion assay. J Cell Biol 134:549–557

    Article  CAS  PubMed  Google Scholar 

  • Arbeit JM, Munger K, Howley PM, Hanahan D (1994) Progressive squamous epithelial neoplasia in K14-human papillomavirus type 16 transgenic mice. J Virol 68:4358–4368

    CAS  PubMed  Google Scholar 

  • Bickenbach JR, Greer JM, Bundman DS, Rothnagel JA, Roop DR (1995) Loricrin expression is coordinated with other epidermal proteins and the appearance of lipid lamellar granules in development. J Invest Dermatol 104:405–410

    Article  CAS  PubMed  Google Scholar 

  • Brandner JM (2009) Tight junctions and tight junction proteins in mammalian epidermis. Eur J Pharm Biopharm 72:289–294

    Article  CAS  PubMed  Google Scholar 

  • Byrne C, Tainsky M, Fuchs E (1994) Programming gene expression in developing epidermis. Development 120:2369–2383

    CAS  PubMed  Google Scholar 

  • Charest JL, Jennings JM, King WP, Kowalczyk AP, Garcia AJ (2009) Cadherin-mediated cell-cell contact regulates keratinocyte differentiation. J Invest Dermatol 129:564–572

    Article  CAS  PubMed  Google Scholar 

  • Dassule HR, Lewis P, Bei M, Maas R, McMahon AP (2000) Sonic hedgehog regulates growth and morphogenesis of the tooth. Development 127:4775–4785

    CAS  PubMed  Google Scholar 

  • Disanza A, Steffen A, Hertzog M, Frittoli E, Rottner K et al (2005) Actin polymerization machinery: the finish line of signaling networks, the starting point of cellular movement. Cell Mol Life Sci 62:955–970

    Article  CAS  PubMed  Google Scholar 

  • Findlater GS, McDougall RD, Kaufman MH (1993) Eyelid development, fusion and subsequent reopening in the mouse. J Anat 183(Pt 1):121–129

    PubMed  Google Scholar 

  • Fuchs E, Raghavan S (2002) Getting under the skin of epidermal morphogenesis. Nat Rev Genet 3:199–209

    Article  CAS  PubMed  Google Scholar 

  • Furuse M, Sasaki H, Fujimoto K, Tsukita S (1998) A single gene product, claudin-1 or -2, reconstitutes tight junction strands and recruits occludin in fibroblasts. J Cell Biol 143:391–401

    Article  CAS  PubMed  Google Scholar 

  • Furuse M, Hata M, Furuse K, Yoshida Y, Haratake A et al (2002) Claudin-based tight junctions are crucial for the mammalian epidermal barrier: a lesson from claudin-1-deficient mice. J Cell Biol 156:1099–1111

    Article  CAS  PubMed  Google Scholar 

  • Hodivala-Dilke KM, DiPersio CM, Kreidberg JA, Hynes RO (1998) Novel roles for alpha3beta1 integrin as a regulator of cytoskeletal assembly and as a trans-dominant inhibitor of integrin receptor function in mouse keratinocytes. J Cell Biol 142:1357–1369

    Article  CAS  PubMed  Google Scholar 

  • Holtz ML, Misra RP (2008) Endothelial-specific ablation of serum response factor causes hemorrhaging, yolk sac vascular failure, and embryonic lethality. BMC Dev Biol 8:65

    Article  PubMed  Google Scholar 

  • Jin C, Yin F, Lin M, Li H, Wang Z et al (2008) GPR48 regulates epithelial cell proliferation and migration by activating EGFR during eyelid development. Invest Ophthalmol Vis Sci 49:4245–4253

    Article  PubMed  Google Scholar 

  • Johansen FE, Prywes R (1995) Serum response factor: transcriptional regulation of genes induced by growth factors and differentiation. Biochim Biophys Acta 1242:1–10

    PubMed  Google Scholar 

  • Kato S, Mohri Y, Matsuo T, Ogawa E, Umezawa A et al (2007) Eye-open at birth phenotype with reduced keratinocyte motility in LGR4 null mice. FEBS Lett 581:4685–4690

    Article  CAS  PubMed  Google Scholar 

  • Koegel H, von Tobel L, Schafer M, Alberti S, Kremmer E et al (2009) Loss of serum response factor in keratinocytes results in hyperproliferative skin disease in mice. J Clin Invest 119:899–910

    Article  CAS  PubMed  Google Scholar 

  • Kolly C, Suter MM, Muller EJ (2005) Proliferation, cell cycle exit, and onset of terminal differentiation in cultured keratinocytes: pre-programmed pathways in control of C-Myc and Notch1 prevail over extracellular calcium signals. J Invest Dermatol 124:1014–1025

    Article  CAS  PubMed  Google Scholar 

  • Koster MI, Roop DR (2007) Mechanisms regulating epithelial stratification. Annu Rev Cell Dev Biol 23:93–113

    Article  CAS  PubMed  Google Scholar 

  • Lechler T, Fuchs E (2005) Asymmetric cell divisions promote stratification and differentiation of mammalian skin. Nature 437:275–280

    Article  CAS  PubMed  Google Scholar 

  • Li G, Gustafson-Brown C, Hanks SK, Nason K, Arbeit JM et al (2003) c-Jun is essential for organization of the epidermal leading edge. Dev Cell 4:865–877

    Article  CAS  PubMed  Google Scholar 

  • Mericskay M, Blanc J, Tritsch E, Moriez R, Aubert P et al (2007) Inducible mouse model of chronic intestinal pseudo-obstruction by smooth muscle-specific inactivation of the SRF gene. Gastroenterology 133:1960–1970

    Article  CAS  PubMed  Google Scholar 

  • Miano JM (2003) Serum response factor: toggling between disparate programs of gene expression. J Mol Cell Cardiol 35:577–593

    Article  CAS  PubMed  Google Scholar 

  • Miano JM, Ramanan N, Georger MA, de Mesy Bentley KL, Emerson RL et al (2004) Restricted inactivation of serum response factor to the cardiovascular system. Proc Natl Acad Sci USA 101:17132–17137

    Article  CAS  PubMed  Google Scholar 

  • Miano JM, Long X, Fujiwara K (2007) Serum response factor: master regulator of the actin cytoskeleton and contractile apparatus. Am J Physiol Cell Physiol 292:C70–C81

    Article  CAS  PubMed  Google Scholar 

  • Niessen CM (2007) Tight junctions/adherens junctions: basic structure and function. J Invest Dermatol 127:2525–2532

    Article  CAS  PubMed  Google Scholar 

  • Proksch E, Brandner JM, Jensen JM (2008) The skin: an indispensable barrier. Exp Dermatol 17(12):1063–1072

    Article  PubMed  Google Scholar 

  • Roop DR, Krieg TM, Mehrel T, Cheng CK, Yuspa SH (1988) Transcriptional control of high molecular weight keratin gene expression in multistage mouse skin carcinogenesis. Cancer Res 48:3245–3252

    CAS  PubMed  Google Scholar 

  • Schneeberger EE, Lynch RD (2004) The tight junction: a multifunctional complex. Am J Physiol Cell Physiol 286:C1213–C1228

    Article  CAS  PubMed  Google Scholar 

  • Segre JA, Bauer C, Fuchs E (1999) Klf4 is a transcription factor required for establishing the barrier function of the skin. Nat Genet 22:356–360

    Article  CAS  PubMed  Google Scholar 

  • Shimizu Y, Thumkeo D, Keel J, Ishizaki T, Oshima H et al (2005) ROCK-I regulates closure of the eyelids and ventral body wall by inducing assembly of actomyosin bundles. J Cell Biol 168:941–953

    Article  CAS  PubMed  Google Scholar 

  • Small JV, Stradal T, Vignal E, Rottner K (2002) The lamellipodium: where motility begins. Trends Cell Biol 12:112–120

    Article  CAS  PubMed  Google Scholar 

  • Tao H, Shimizu M, Kusumoto R, Ono K, Noji S et al (2005) A dual role of FGF10 in proliferation and coordinated migration of epithelial leading edge cells during mouse eyelid development. Development 132:3217–3230

    Article  CAS  PubMed  Google Scholar 

  • Thumkeo D, Shimizu Y, Sakamoto S, Yamada S, Narumiya S (2005) ROCK-I and ROCK-II cooperatively regulate closure of eyelid and ventral body wall in mouse embryo. Genes Cells 10:825–834

    Article  CAS  PubMed  Google Scholar 

  • Treisman R, Alberts AS, Sahai E (1998) Regulation of SRF activity by Rho family GTPases. Cold Spring Harb Symp Quant Biol 63:643–651

    Article  CAS  PubMed  Google Scholar 

  • Tunggal JA, Helfrich I, Schmitz A, Schwarz H, Gunzel D et al (2005) E-cadherin is essential for in vivo epidermal barrier function by regulating tight junctions. EMBO J 24:1146–1156

    Article  CAS  PubMed  Google Scholar 

  • Vaezi A, Bauer C, Vasioukhin V, Fuchs E (2002) Actin cable dynamics and Rho/Rock orchestrate a polarized cytoskeletal architecture in the early steps of assembling a stratified epithelium. Dev Cell 3:367–381

    Article  CAS  PubMed  Google Scholar 

  • Vasioukhin V, Degenstein L, Wise B, Fuchs E (1999) The magical touch: genome targeting in epidermal stem cells induced by tamoxifen application to mouse skin. Proc Natl Acad Sci USA 96:8551–8556

    Article  CAS  PubMed  Google Scholar 

  • Vasioukhin V, Bauer C, Yin M, Fuchs E (2000) Directed actin polymerization is the driving force for epithelial cell-cell adhesion. Cell 100:209–219

    Article  CAS  PubMed  Google Scholar 

  • Verdoni AM, Aoyama N, Ikeda A, Ikeda S (2008) Effect of destrin mutations on the gene expression profile in vivo. Physiol Genomics 34:9–21

    Article  CAS  PubMed  Google Scholar 

  • Wickramasinghe SR, Alvania RS, Ramanan N, Wood JN, Mandai K et al (2008) Serum response factor mediates NGF-dependent target innervation by embryonic DRG sensory neurons. Neuron 58:532–545

    Article  CAS  PubMed  Google Scholar 

  • Yu Z, Bhandari A, Mannik J, Pham T, Xu X et al (2008) Grainyhead-like factor Get1/Grhl3 regulates formation of the epidermal leading edge during eyelid closure. Dev Biol 319:56–67

    Article  CAS  PubMed  Google Scholar 

  • Zenz R, Scheuch H, Martin P, Frank C, Eferl R et al (2003) c-Jun regulates eyelid closure and skin tumor development through EGFR signaling. Dev Cell 4:879–889

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Wang W, Hayashi Y, Jester JV, Birk DE et al (2003) A role for MEK kinase 1 in TGF-beta/activin-induced epithelium movement and embryonic eyelid closure. EMBO J 22:4443–4454

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from National Institutes of Health (NIH; R01 EY016108). Support for AMV was partially provided by the NIH Predoctoral Training Program in Genetics (T32 GM07133). The authors thank Satoshi Kinoshita for generating frozen sections and the University of Wisconsin-Madison Genetics Confocal Facility for the use of the confocal microscope.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akihiro Ikeda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verdoni, A.M., Ikeda, S. & Ikeda, A. Serum response factor is essential for the proper development of skin epithelium. Mamm Genome 21, 64–76 (2010). https://doi.org/10.1007/s00335-009-9245-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-009-9245-y

Keywords

Navigation