Skip to main content
Log in

Divergent patterns of breakpoint reuse in Muroid rodents

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

Multiple Genome Rearrangement (MGR) analysis was used to define the trajectory and pattern of chromosome rearrangement within muroid rodents. MGR was applied using 107 chromosome homologies between Mus, Rattus, Peromyscus, the muroid sister taxon Cricetulus griseus, and Sciurus carolinensis as a non-Muroidea outgroup, with specific attention paid to breakpoint reuse and centromere evolution. This analysis revealed a high level of chromosome breakpoint conservation between Rattus and Peromyscus and indicated that the chromosomes of Mus are highly derived. This analysis identified several conserved evolutionary breakpoints that have been reused multiple times during karyotypic evolution in rodents. Our data demonstrate a high level of reuse of breakpoints among muroid rodents, further supporting the “Fragile Breakage Model” of chromosome evolution. We provide the first analysis of rodent centromeres with respect to evolutionary breakpoints. By analyzing closely related rodent species we were able to clarify muroid rodent karyotypic evolution. We were also able to derive several high-resolution ancestral karyotypes and identify rearrangements specific to various stages of Muroidea evolution. These data were useful in further characterizing lineage-specific modes of chromosome evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bourque G, Pevzner PA, Tesler G (2004) Reconstructing the genomic architecture of ancestral mammals: lessons from human, mouse, and rat genomes. Genome Res 14:507–516

    Article  CAS  PubMed  Google Scholar 

  • Bourque G, Zdobnov EM, Bork P, Pevzner PA, Tesler G (2005) Comparative architectures of mammalian and chicken genomes reveal highly variable rates of genomic rearrangements across different lineages. Genome Res 15:98–110

    Article  CAS  PubMed  Google Scholar 

  • Bourque G, Tesler G, Pevzner PA (2006) The convergence of cytogenetics and rearrangement-based models for ancestral genome reconstruction. Genome Res 16:311–313

    Article  CAS  PubMed  Google Scholar 

  • Bulazel K, Ferreri GC, Eldridge MD, O’Neill RJ (2007) Species-specific shifts in centromere sequence composition are coincident with breakpoint reuse in karyotypically divergent lineages. Genome Biol 8(8):R170

    Article  PubMed  Google Scholar 

  • Dobigny G, Ducroz JF, Robinson TJ, Volobouev V (2004) Cytogenetics and cladistics. Syst Biol 53:470–484

    Article  PubMed  Google Scholar 

  • Eichler EE, Sankoff D (2003) Structural dynamics of eukaryotic chromosome evolution. Science 301:793–797

    Article  CAS  PubMed  Google Scholar 

  • Engelbrecht A, Dobigny G, Robinson TJ (2006) Further insights into the ancestral murine karyotype: the contribution of the Otomys-Mus comparison using chromosome painting. Cytogenet Genome Res 112:126–130

    Article  CAS  PubMed  Google Scholar 

  • Ferguson-Smith MA, Trifonov V (2007) Mammalian karyotype evolution. Nat Rev 8:950–962

    Article  CAS  Google Scholar 

  • Ferreri GC, Liscinsky DM, Mack JA, Eldridge MD, O’Neill RJ (2005) Retention of latent centromeres in the mammalian genome. J Hered 96:217–224

    Article  CAS  PubMed  Google Scholar 

  • Froenicke L, Caldes MG, Graphodatsky A, Muller S, Lyons LA et al (2006) Are molecular cytogenetics and bioinformatics suggesting diverging models of ancestral mammalian genomes? Genome Res 16:306–310

    Article  CAS  PubMed  Google Scholar 

  • Gibbs RA, Weinstock GM, Metzker ML, Muzny DM, Sodergren EJ (2004) Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature 428:493–521

    Article  CAS  PubMed  Google Scholar 

  • Glover TW (2006) Common fragile sites. Cancer Lett 232:4–12

    Article  CAS  PubMed  Google Scholar 

  • Greenbaum IF, Gunn SJ, Smith SA, McAllister BF, Hale DW et al (1994) Cytogenetic nomenclature of deer mice, Peromyscus (Rodentia): revision and review of the standardized karyotype. Report of the Committee for the Standardization of Chromosomes of Peromyscus. Cytogenet Cell Genet 66:181–195

  • Grutzner F, Himmelbauer H, Paulsen M, Ropers HH, Haaf T (1999) Comparative mapping of mouse and rat chromosomes by fluorescence in situ hybridization. Genomics 55:306–313

    Article  CAS  PubMed  Google Scholar 

  • Helou K, Walentinsson A, Levan G, Stahl F (2001) Between rat and mouse zoo-FISH reveals 49 chromosomal segments that have been conserved in evolution. Mamm Genome 12:765–771

    CAS  PubMed  Google Scholar 

  • Hsu TC, Arrighi FE (1968) Chromosomes of Peromyscus (Rodentia, Cricetidae). I. Evolutionary trends in 20 species. Cytogenetics 7:417–446

    Article  CAS  PubMed  Google Scholar 

  • Jansa SA, Weksler M (2004) Phylogeny of muroid rodents: relationships within and among major lineages as determined by IRBP gene sequences. Mol Phylogenet Evol 31:256–276

    Article  CAS  PubMed  Google Scholar 

  • Kuroiwa A, Tsuchiya K, Matsubara K, Namikawa T, Matsuda Y (2001) Construction of comparative cytogenetic maps of the Chinese hamster to mouse, rat and human. Chromosome Res 9:641–648

    Article  CAS  PubMed  Google Scholar 

  • Li T, O’Brien PC, Biltueva L, Fu B, Wang J et al (2004) Evolution of genome organizations of squirrels (Sciuridae) revealed by cross-species chromosome painting. Chromosome Res 12:317–335

    Article  PubMed  Google Scholar 

  • Lichter P, Tang CJ, Call K, Hermanson G, Evans GA et al (1990) High-resolution mapping of human chromosome 11 by in situ hybridization with cosmid clones. Science 247:64–69

    Article  CAS  PubMed  Google Scholar 

  • Louzada S, Paco A, Kubickova S, Adega F, Guedes-Pinto H et al (2008) Different evolutionary trails in the related genomes Cricetus cricetus and Peromyscus eremicus (Rodentia, Cricetidae) uncovered by orthologous satellite DNA repositioning. Micron 39:1149–1155

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Zhang L, Suh BB, Raney BJ, Burhans RC et al (2006) Reconstructing contiguous regions of an ancestral genome. Genome Res 16:1557–1565

    Article  CAS  PubMed  Google Scholar 

  • Mlynarski EE, Obergfell CJ, Rens W, O’Brien PC, Ramsdell CM et al (2008) Peromyscus maniculatus–Mus musculus chromosome homology map derived from reciprocal cross species chromosome painting. Cytogenet Genome Res 121:288–292

    Article  CAS  PubMed  Google Scholar 

  • Murphy WJ, Eizirik E, Johnson WE, Zhang YP, Ryder OA et al (2001a) Molecular phylogenetics and the origins of placental mammals. Nature 409:614–618

    Article  CAS  PubMed  Google Scholar 

  • Murphy WJ, Eizirik E, O’Brien SJ, Madsen O, Scally M et al (2001b) Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science 294:2348–2351

    Article  CAS  PubMed  Google Scholar 

  • Murphy WJ, Bourque G, Tesler G, Pevzner P, O’Brien SJ (2003) Reconstructing the genomic architecture of mammalian ancestors using multispecies comparative maps. Hum Genomics 1:30–40

    CAS  PubMed  Google Scholar 

  • Murphy WJ, Larkin DM, Everts-van der Wind A, Bourque G, Tesler G et al (2005) Dynamics of mammalian chromosome evolution inferred from multispecies comparative maps. Science 309:613–617

    Article  CAS  PubMed  Google Scholar 

  • Nadeau JH, Taylor BA (1984) Lengths of chromosomal segments conserved since divergence of man and mouse. Proc Natl Acad Sci U S A 81:814–818

    Article  CAS  PubMed  Google Scholar 

  • Nilsson S, Helou K, Walentinsson A, Szpirer C, Nerman O et al (2001) Rat-mouse and rat-human comparative maps based on gene homology and high-resolution zoo-FISH. Genomics 74:287–298

    Article  CAS  PubMed  Google Scholar 

  • O’Neill RJ, Eldridge MD, Metcalfe CJ (2004) Centromere dynamics and chromosome evolution in marsupials. J Hered 95:375–381

    Article  PubMed  Google Scholar 

  • Ohno S (1973) Ancient linkage groups and frozen accidents. Nature 244:259–262

    Article  Google Scholar 

  • Peng Q, Pevzner PA, Tesler G (2006) The fragile breakage versus random breakage models of chromosome evolution. PLoS Comput Biol 2:e14

    Article  PubMed  Google Scholar 

  • Pevzner P, Tesler G (2003a) Genome rearrangements in mammalian evolution: lessons from human and mouse genomes. Genome Res 13:37–45

    Article  CAS  PubMed  Google Scholar 

  • Pevzner P, Tesler G (2003b) Human and mouse genomic sequences reveal extensive breakpoint reuse in mammalian evolution. Proc Natl Acad Sci U S A 100:7672–7677

    Article  CAS  PubMed  Google Scholar 

  • Richard F, Lombard M, Dutrillaux B (2003) Reconstruction of the ancestral karyotype of eutherian mammals. Chromosome Res 11:605–618

    Article  CAS  PubMed  Google Scholar 

  • Robbins LW, Baker RJ (1981) An assessment of the nature of chromosomal rearrangements in 18 species of Peromyscus (Rodentia: Cricetidae). Cytogenet Cell Genet 31:194–202

    Article  CAS  PubMed  Google Scholar 

  • Robinson TJ, Ruiz-Herrera A, Froenicke L (2006) Dissecting the mammalian genome—new insights into chromosomal evolution. Trends Genet 22:297–301

    Article  CAS  PubMed  Google Scholar 

  • Romanenko SA, Perelman PL, Serdukova NA, Trifonov VA, Biltueva LS et al (2006) Reciprocal chromosome painting between three laboratory rodent species. Mamm Genome 17:1183–1192

    Article  PubMed  Google Scholar 

  • Romanenko SA, Volobouev VT, Perelman PL, Lebedev VS, Serdukova NA et al (2007) Karyotype evolution and phylogenetic relationships of hamsters (Cricetidae, Muroidea, Rodentia) inferred from chromosomal painting and banding comparison. Chromosome Res 15:283–297

    Article  CAS  PubMed  Google Scholar 

  • Sarich V (1985) Evolutionary relationships among rodents: a multi-disciplinary analysis. Plenum, New York

    Google Scholar 

  • Serov O, Chowdhary BP, Womack JE, Graves JAM (2005) Comparative gene mapping, chromosome painting and the reconstruction of the ancestral karyotype. In: Ruvinsky A, Graves JAM (eds) Mammalian genomics. CABI Publishing, Cambridge, MA, pp 349–392

    Chapter  Google Scholar 

  • Stanyon R, Yang F, Cavagna P, O’Brien PC, Bagga M et al (1999) Reciprocal chromosome painting shows that genomic rearrangement between rat and mouse proceeds ten times faster than between humans and cats. Cytogenet Cell Genet 84:150–155

    Article  CAS  PubMed  Google Scholar 

  • Stanyon R, Stone G, Garcia M, Froenicke L (2003) Reciprocal chromosome painting shows that squirrels, unlike murid rodents, have a highly conserved genome organization. Genomics 82:245–249

    Article  CAS  PubMed  Google Scholar 

  • Stanyon R, Yang F, Morescalchi AM, Galleni L (2004) Chromosome painting in the long-tailed field mouse provides insights into the ancestral murid karyotype. Cytogenet Genome Res 105:406–411

    Article  CAS  PubMed  Google Scholar 

  • Steppan S, Adkins R, Anderson J (2004) Phylogeny and divergence-date estimates of rapid radiations in muroid rodents based on multiple nuclear genes. Syst Biol 53:533–553

    Article  PubMed  Google Scholar 

  • Tesler G (2002) GRIMM: genome rearrangements web server. Bioinformatics 18:492–493

    Article  CAS  PubMed  Google Scholar 

  • Veyrunes F, Dobigny G, Yang F, O’Brien PC, Catalan J et al (2006) Phylogenomics of the genus Mus (Rodentia; Muridae): extensive genome repatterning is not restricted to the house mouse. Proc Biol Sci 273:2925–2934

    Article  PubMed  Google Scholar 

  • Yang F, Graphodatsky AS, Li T, Fu B, Dobigny G et al (2006) Comparative genome maps of the pangolin, hedgehog, sloth, anteater and human revealed by cross-species chromosome painting: further insight into the ancestral karyotype and genome evolution of eutherian mammals. Chromosome Res 14:283–296

    Article  CAS  PubMed  Google Scholar 

  • Zhao S, Shetty J, Hou L, Delcher A, Zhu B et al (2004) Human, mouse, and rat genome large-scale rearrangements: stability versus speciation. Genome Res 14:1851–1860

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

EEM, CO, MJO, and RJO were supported by NIH grant P40-RR14279 and the UCONN Research Foundation. Thanks to Glenn Tesler for supplying the MGR program and Gianni Ferreri for running our analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. J. O’Neill.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 352 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mlynarski, E.E., Obergfell, C.J., O’Neill, M.J. et al. Divergent patterns of breakpoint reuse in Muroid rodents. Mamm Genome 21, 77–87 (2010). https://doi.org/10.1007/s00335-009-9242-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-009-9242-1

Keywords

Navigation