Abstract
MicroRNAs (miRNAs) are one class of tiny, endogenous RNAs that can regulate messenger RNA (mRNA) expression by targeting homologous sequences in mRNAs. Their aberrant expressions have been observed in many cancers and several miRNAs have been convincingly shown to play important roles in carcinogenesis. Since the discovery of this small regulator, computational methods have been indispensable tools in miRNA gene finding and functional studies. In this review we first briefly outline the biological findings of miRNA genes, such as genomic feature, biogenesis, gene structure, and functional mechanism. We then discuss in detail the three main aspects of miRNA computational studies: miRNA gene finding, miRNA target prediction, and regulation of miRNA genes. Finally, we provide perspectives on some emerging issues, including combinatorial regulation by miRNAs and functional binding sites beyond the 3′-untranslated region (3′UTR) of target mRNAs. Available online resources for miRNA computational studies are also provided.
Similar content being viewed by others
Abbreviations
- miRNAs:
-
MicroRNAs
- pri-miRNAs:
-
Primary miRNAs
- UTR:
-
Untranslated region
- miRNPs:
-
Micro-ribonucleoproteins
- miRISCs:
-
miRNA-induced silencing complexes
- AGO:
-
Argonaute
- SVM:
-
Support vector machine
- HMM:
-
Hidden Markov model
- HITS-CLIP:
-
High-throughput sequencing of RNAs isolated by crosslinking immunoprecipitation
- TFs:
-
Transcription factors
- Pol II or Pol III:
-
RNA polymerase II or III
- TSS:
-
Transcription start site
References
Addo-Quaye C, Miller W, Axtell MJ (2009) CleaveLand: a pipeline for using degradome data to find cleaved small RNA targets. Bioinformatics 25:130–131
Amaral PP, Dinger ME, Mercer TR, Mattick JS (2008) The eukaryotic genome as an RNA machine. Science 319:1787–1789
Baek D, Villen J, Shin C, Camargo FD, Gygi SP et al (2008) The impact of microRNAs on protein output. Nature 455:64–71
Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297
Baskerville S, Bartel DP (2005) Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA 11:241–247
Bentwich I, Avniel A, Karov Y, Aharonov R, Gilad S et al (2005) Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet 37:766–770
Berezikov E, Chung WJ, Willis J, Cuppen E, Lai EC (2007) Mammalian mirtron genes. Mol Cell 28:328–336
Borchert GM, Lanier W, Davidson BL (2006) RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol 13:1097–1101
Cai X, Hagedorn CH, Cullen BR (2004) Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 10:1957–1966
Chang YM, Juan HF, Lee TY, Chang YY, Yeh YM et al (2008) Prediction of human miRNAs using tissue-selective motifs in 3′ UTRs. Proc Natl Acad Sci USA 105:17061–17066
Chi SW, Zang JB, Mele A, Darnell RB (2009) Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature 460:479–486
Cui C, Griffiths A, Li G, Silva LM, Kramer MF et al (2006) Prediction and identification of herpes simplex virus 1-encoded microRNAs. J Virol 80:5499–5508
Dews M, Homayouni A, Yu D, Murphy D, Sevignani C et al (2006) Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nat Genet 38:1060–1065
Easow G, Teleman AA, Cohen SM (2007) Isolation of microRNA targets by miRNP immunopurification. RNA 13:1198–1204
Enright AJ, John B, Gaul U, Tuschl T, Sander C et al (2003) MicroRNA targets in Drosophila. Genome Biol 5:R1
Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9:102–114
Fontana L, Pelosi E, Greco P, Racanicchi S, Testa U et al (2007) MicroRNAs 17–5p-20a–106a control monocytopoiesis through AML1 targeting and M-CSF receptor upregulation. Nat Cell Biol 9:775–787
Forman JJ, Legesse-Miller A, Coller HA (2008) A search for conserved sequences in coding regions reveals that the let-7 microRNA targets Dicer within its coding sequence. Proc Natl Acad Sci USA 105:14879–14884
Friedlander MR, Chen W, Adamidi C, Maaskola J, Einspanier R et al (2008) Discovering microRNAs from deep sequencing data using miRDeep. Nat Biotechnol 26:407–415
German MA, Pillay M, Jeong DH, Hetawal A, Luo S et al (2008) Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends. Nat Biotechnol 26:941–946
Giraldez AJ, Cinalli RM, Glasner ME, Enright AJ, Thomson JM et al (2005) MicroRNAs regulate brain morphogenesis in zebrafish. Science 308:833–838
Giraldez AJ, Mishima Y, Rihel J, Grocock RJ, Van Dongen S et al (2006) Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science 312:75–79
Grun D, Wang YL, Langenberger D, Gunsalus KC, Rajewsky N (2005) microRNA target predictions across seven Drosophila species and comparison to mammalian targets. PLoS Comput Biol 1:e13
Grundhoff A, Sullivan CS, Ganem D (2006) A combined computational and microarray-based approach identifies novel microRNAs encoded by human gamma-herpesviruses. RNA 12:733–750
Hackenberg M, Sturm M, Langenberger D, Falcon-Perez JM, Aransay AM (2009) miRanalyzer: a microRNA detection and analysis tool for next-generation sequencing experiments. Nucleic Acids Res 37:W68–W76
Hammell M, Long D, Zhang L, Lee A, Carmack CS et al (2008) mirWIP: microRNA target prediction based on microRNA-containing ribonucleoprotein-enriched transcripts. Nat Methods 5:813–819
Helvik SA, Snove O Jr, Saetrom P (2007) Reliable prediction of Drosha processing sites improves microRNA gene prediction. Bioinformatics 23:142–149
Hertel J, Stadler PF (2006) Hairpins in a haystack: recognizing microRNA precursors in comparative genomics data. Bioinformatics 22:e197–e202
Hsu PW, Lin LZ, Hsu SD, Hsu JB, Huang HD (2007) ViTa: prediction of host microRNAs targets on viruses. Nucleic Acids Res 35:D381–D385
Huang JC, Babak T, Corson TW, Chua G, Khan S et al (2007a) Using expression profiling data to identify human microRNA targets. Nat Methods 4:1045–1049
Huang TH, Fan B, Rothschild MF, Hu ZL, Li K et al (2007b) MiRFinder: an improved approach and software implementation for genome-wide fast microRNA precursor scans. BMC Bioinformatics 8:341
Hwang HW, Wentzel EA, Mendell JT (2007) A hexanucleotide element directs microRNA nuclear import. Science 315:97–100
Jiang P, Wu H, Wang W, Ma W, Sun X et al (2007) MiPred: classification of real and pseudo microRNA precursors using random forest prediction model with combined features. Nucleic Acids Res 35:W339–W344
Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E (2007) The role of site accessibility in microRNA target recognition. Nat Genet 39:1278–1284
Kim DH, Saetrom P, Snove O Jr, Rossi JJ (2008) MicroRNA-directed transcriptional gene silencing in mammalian cells. Proc Natl Acad Sci USA 105:16230–16235
Kim SK, Nam JW, Rhee JK, Lee WJ, Zhang BT (2006) miTarget: microRNA target gene prediction using a support vector machine. BMC Bioinformatics 7:411
Kim VN (2005) MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 6:376–385
Kim YK, Yu J, Han TS, Park SY, Namkoong B et al (2009) Functional links between clustered microRNAs: suppression of cell-cycle inhibitors by microRNA clusters in gastric cancer. Nucleic Acids Res 37:1672–1681
Kiriakidou M, Nelson PT, Kouranov A, Fitziev P, Bouyioukos C et al (2004) A combined computational-experimental approach predicts human microRNA targets. Genes Dev 18:1165–1178
Krek A, Grun D, Poy MN, Wolf R, Rosenberg L et al (2005) Combinatorial microRNA target predictions. Nat Genet 37:495–500
Lall S, Grun D, Krek A, Chen K, Wang YL et al (2006) A genome-wide map of conserved microRNA targets in C. elegans. Curr Biol 16:460–471
Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N et al (2007) A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129:1401–1414
Lee J, Li Z, Brower-Sinning R, John B (2007) Regulatory circuit of human microRNA biogenesis. PLoS Comput Biol 3:e67
Lee RC, Ambros V (2001) An extensive class of small RNAs in Caenorhabditis elegans. Science 294:862–864
Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854
Lee Y, Jeon K, Lee JT, Kim S, Kim VN (2002) MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 21:4663–4670
Lee Y, Kim M, Han J, Yeom KH, Lee S et al (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23:4051–4060
Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB (2003) Prediction of mammalian microRNA targets. Cell 115:787–798
Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20
Li SC, Shiau CK, Lin WC (2008) Vir-Mir db: prediction of viral microRNA candidate hairpins. Nucleic Acids Res 36:D184–D189
Lim LP, Lau NC, Weinstein EG, Abdelhakim A, Yekta S et al (2003) The microRNAs of Caenorhabditis elegans. Genes Dev 17:991–1008
Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM et al (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433:769–773
Lindow M, Gorodkin J (2007) Principles and limitations of computational microRNA gene and target finding. DNA Cell Biol 26:339–351
Linsen SE, de Wit E, Janssens G, Heater S, Chapman L et al (2009) Limitations and possibilities of small RNA digital gene expression profiling. Nat Methods 6:474–476
Long D, Lee R, Williams P, Chan CY, Ambros V et al (2007) Potent effect of target structure on microRNA function. Nat Struct Mol Biol 14:287–294
Lytle JR, Yario TA, Steitz JA (2007) Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5′ UTR as in the 3′ UTR. Proc Natl Acad Sci USA 104:9667–9672
Marson A, Levine SS, Cole MF, Frampton GM, Brambrink T et al (2008) Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell 134:521–533
Martinez NJ, Ow MC, Barrasa MI, Hammell M, Sequerra R et al (2008) A C. elegans genome-scale microRNA network contains composite feedback motifs with high flux capacity. Genes Dev 22:2535–2549
Maziere P, Enright AJ (2007) Prediction of microRNA targets. Drug Discov Today 12:452–458
Megraw M, Sethupathy P, Corda B, Hatzigeorgiou AG (2007) miRGen: a database for the study of animal microRNA genomic organization and function. Nucleic Acids Res 35:D149–D155
Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D et al (2002) Network motifs: simple building blocks of complex networks. Science 298:824–827
Miranda KC, Huynh T, Tay Y, Ang YS, Tam WL et al (2006) A pattern-based method for the identification of microRNA binding sites and their corresponding heteroduplexes. Cell 126:1203–1217
Nam JW, Kim J, Kim SK, Zhang BT (2006) ProMiR II: a web server for the probabilistic prediction of clustered, nonclustered, conserved and nonconserved microRNAs. Nucleic Acids Res 34:W455–W458
Ng KL, Mishra SK (2007) De novo SVM classification of precursor microRNAs from genomic pseudo hairpins using global and intrinsic folding measures. Bioinformatics 23:1321–1330
Okamura K, Hagen JW, Duan H, Tyler DM, Lai EC (2007) The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell 130:89–100
Okamura K, Phillips MD, Tyler DM, Duan H, Chou YT et al (2008) The regulatory activity of microRNA* species has substantial influence on microRNA and 3′ UTR evolution. Nat Struct Mol Biol 15:354–363
Olson AJ, Brennecke J, Aravin AA, Hannon GJ, Sachidanandam R (2008) Analysis of large-scale sequencing of small RNAs. Pac Symp Biocomput 126-136
Ozsolak F, Poling LL, Wang Z, Liu H, Liu XS et al (2008) Chromatin structure analyses identify miRNA promoters. Genes Dev 22:3172–3183
Papadopoulos GL, Reczko M, Simossis VA, Sethupathy P, Hatzigeorgiou AG (2009) The database of experimentally supported targets: a functional update of TarBase. Nucleic Acids Res 37:D155–D158
Pfeffer S, Zavolan M, Grasser FA, Chien M, Russo JJ et al (2004) Identification of virus-encoded microRNAs. Science 304:734–736
Pfeffer S, Sewer A, Lagos-Quintana M, Sheridan R, Sander C et al (2005) Identification of microRNAs of the herpesvirus family. Nat Methods 2:269–276
Place RF, Li LC, Pookot D, Noonan EJ, Dahiya R (2008) MicroRNA-373 induces expression of genes with complementary promoter sequences. Proc Natl Acad Sci USA 105:1608–1613
Rehmsmeier M, Steffen P, Hochsmann M, Giegerich R (2004) Fast and effective prediction of microRNA/target duplexes. RNA 10:1507–1517
Ruby JG, Jan CH, Bartel DP (2007) Intronic microRNA precursors that bypass Drosha processing. Nature 448:83–86
Rusinov V, Baev V, Minkov IN, Tabler M (2005) MicroInspector: a web tool for detection of miRNA binding sites in an RNA sequence. Nucleic Acids Res 33:W696–W700
Saetrom O, Snove O Jr, Saetrom P (2005) Weighted sequence motifs as an improved seeding step in microRNA target prediction algorithms. RNA 11:995–1003
Saini HK, Griffiths-Jones S, Enright AJ (2007) Genomic analysis of human microRNA transcripts. Proc Natl Acad Sci USA 104:17719–17724
Selbach M, Schwanhausser B, Thierfelder N, Fang Z, Khanin R et al (2008) Widespread changes in protein synthesis induced by microRNAs. Nature 455:58–63
Sethupathy P, Megraw M, Hatzigeorgiou AG (2006) A guide through present computational approaches for the identification of mammalian microRNA targets. Nat Methods 3:881–886
Sewer A, Paul N, Landgraf P, Aravin A, Pfeffer S et al (2005) Identification of clustered microRNAs using an ab initio prediction method. BMC Bioinformatics 6:267
Sullivan CS, Ganem D (2005) MicroRNAs and viral infection. Mol Cell 20:3–7
Tay Y, Zhang J, Thomson AM, Lim B, Rigoutsos I (2008) MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature 455:1124–1128
Thadani R, Tammi MT (2006) MicroTar: predicting microRNA targets from RNA duplexes. BMC Bioinformatics 7 Suppl 5:S20
van Dongen S, Abreu-Goodger C, Enright AJ (2008) Detecting microRNA binding and siRNA off-target effects from expression data. Nat Methods 5:1023–1025
Wang X, Zhang J, Li F, Gu J, He T et al (2005) MicroRNA identification based on sequence and structure alignment. Bioinformatics 21:3610–3614
Xu J, Wong C (2008) A computational screen for mouse signaling pathways targeted by microRNA clusters. RNA 14:1276–1283
Xue C, Li F, He T, Liu GP, Li Y et al (2005) Classification of real and pseudo microRNA precursors using local structure-sequence features and support vector machine. BMC Bioinformatics 6:310
Yousef M, Nebozhyn M, Shatkay H, Kanterakis S, Showe LC et al (2006) Combining multi-species genomic data for microRNA identification using a Naive Bayes classifier. Bioinformatics 22:1325–1334
Yousef M, Jung S, Kossenkov AV, Showe LC, Showe MK (2007) Naive Bayes for microRNA target predictions–machine learning for microRNA targets. Bioinformatics 23:2987–2992
Yu X, Lin J, Zack DJ, Mendell JT, Qian J (2008) Analysis of regulatory network topology reveals functionally distinct classes of microRNAs. Nucleic Acids Res 36:6494–6503
Yuan X, Liu C, Yang P, He S, Liao Q et al (2009) Clustered microRNAs’ coordination in regulating protein-protein interaction network. BMC Syst Biol 3:65
Zhang L, Ding L, Cheung TH, Dong MQ, Chen J et al (2007) Systematic identification of C. elegans miRISC proteins, miRNAs, and mRNA targets by their interactions with GW182 proteins AIN-1 and AIN-2. Mol Cell 28:598–613
Zhao Y, Samal E, Srivastava D (2005) Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature 436:214–220
Zhou X, Ruan J, Wang G, Zhang W (2007) Characterization and identification of microRNA core promoters in four model species. PLoS Comput Biol 3:e37
Ziegelbauer JM, Sullivan CS, Ganem D (2009) Tandem array-based expression screens identify host mRNA targets of virus-encoded microRNAs. Nat Genet 41:130–134
Acknowledgments
We apologize for the failure to cite many of the important and relevant papers in this field due to space limitations. We thank Dr. Baowei Peng and Ms. Jian Fan for critical reading of the manuscript. This work was partially supported by the National Natural Science Foundation of China (Grant No. 60601010), the Science Foundation of the education department of Henan province (Grant No. 2006210002), and the Award for Outstanding Young Teacher of Tongji University (No.TJYQ08014).
Author information
Authors and Affiliations
Corresponding author
Additional information
L. Li and J. Xu contributed equally to this work.
Rights and permissions
About this article
Cite this article
Li, L., Xu, J., Yang, D. et al. Computational approaches for microRNA studies: a review. Mamm Genome 21, 1–12 (2010). https://doi.org/10.1007/s00335-009-9241-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00335-009-9241-2