Skip to main content
Log in

A method for mapping intralocus interactions influencing excessive alcohol drinking

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

Excessive alcohol (ethanol) consumption is the hallmark of alcohol use disorders. The F1 hybrid cross between the C57BL/6J (B6) and FVB/NJ (FVB) inbred mouse strains consumes more ethanol than either progenitor strain. The purpose of this study was to utilize ethanol-drinking data and genetic information to map genes that result in overdominant (or heterotic) ethanol drinking. About 600 B6 × FVB F2 mice, half of each sex, were tested for ethanol intake and preference in a 24-h, two-bottle water versus ethanol choice procedure, with ascending ethanol concentrations. They were then tested for ethanol intake in a Drinking in the Dark (DID) procedure, first when there was no water choice and then when ethanol was offered versus water. DNA samples were obtained and genome-wide QTL analyses were performed to search for single QTLs (both additive and dominance effects) and interactions between pairs of QTLs, or epistasis. On average, F2 mice consumed excessive amounts of ethanol in the 24-h choice procedure, consistent with high levels of consumption seen in the F1 cross. Consumption in the DID procedure was similar or higher than amounts reported previously for the B6 progenitor. QTLs resulting in heightened consumption in heterozygous compared to homozygous animals were found on Chrs 11, 15, and 16 for 24-h choice 30% ethanol consumption, and on Chr 11 for DID. No evidence was found for epistasis between any pair of significant or suggestive QTLs. This indicates that the hybrid overdominance is due to intralocus interactions at the level of individual QTL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Belknap JK, Atkins AL (2001) The replicability of QTLs for murine alcohol preference drinking behavior across eight independent studies. Mamm Genome 12:893–899

    Article  CAS  PubMed  Google Scholar 

  • Belknap JK, Crabbe JC, Young ER (1993) Voluntary consumption of ethanol in 15 inbred mouse strains. Psychopharmacology 112:503–510

    Article  CAS  PubMed  Google Scholar 

  • Bergeson SE, Kyle Warren R, Crabbe JC, Metten P, Erwin VG et al (2003) Chromosomal loci influencing chronic alcohol withdrawal severity. Mamm Genome 14:454–463

    Article  PubMed  Google Scholar 

  • Blednov YA, Metten P, Finn DA, Rhodes JS, Bergeson SE et al (2005) Hybrid C57BL/6J × FVB/NJ mice drink more alcohol that do C57BL/6J mice. Alcohol Clin Exp Res 29:1949–1958

    Article  PubMed  Google Scholar 

  • Boehm SL II, Schafer GL, Phillips TJ, Browman KE, Crabbe JC (2000) Sensitivity to ethanol-induced motor incoordination in 5-HT(1B) receptor null mutant mice is task-dependent: implications for behavioral assessment of genetically altered mice. Behav Neurosci 114:401–409

    Article  CAS  PubMed  Google Scholar 

  • Bohman M, Cloninger R, Sigvardsson S, von Knorring AL (1987) The genetics of alcoholisms and related disorders. J Psychiatr Res 21:447–452

    Article  CAS  PubMed  Google Scholar 

  • Broman KW, Wu H, Sen S, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889–890

    Article  CAS  PubMed  Google Scholar 

  • Broman KW, Sen S, Owens SE, Manichaikul A, Southard-Smith EM et al (2006) The X chromosome in quantitative trait locus mapping. Genetics 174:2151–2158

    Article  CAS  PubMed  Google Scholar 

  • Bruell JH (1967) Behavioral heterosis. In: Hirsch J (ed) Behavior-genetic analysis. McGraw-Hill, New York, pp 270–286

    Google Scholar 

  • Chesler EJ, Lu L, Shou S, Qu Y, Gu J et al (2005) Complex trait analysis of gene expression uncovers polygenic and pleiotropic networks that modulate nervous system function. Nat Genet 37:233–242

    Article  CAS  PubMed  Google Scholar 

  • Crabbe JC, Metten P, Rhodes JS, Yu CH, Brown LL et al (2009) A line of mice selected for high blood ethanol concentrations shows drinking in the dark to intoxication. Biol Psychiatry 65:662–670

    Article  CAS  PubMed  Google Scholar 

  • Crews FT, Boettiger CA (2009) Impulsivity, frontal lobes and risk for addiction. Pharmacol Biochem Behav 93:237–247

    Article  CAS  PubMed  Google Scholar 

  • Ducci F, Goldman D (2008) Genetic approaches to addiction: genes and alcohol. Addiction 103:1414–1428

    Article  PubMed  Google Scholar 

  • Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics, 4th edn. Longman Group Ltd, Essex, UK

    Google Scholar 

  • Gabriel KI, Cunningham CL (2008) Effects of maternal strain on ethanol responses in reciprocal F1 C57BL/6J and DBA/2J hybrid mice. Genes Brain Behav 7:276–287

    Article  CAS  PubMed  Google Scholar 

  • Gill K, Boyle AE (2005) Genetic analysis of alcohol intake in recombinant inbred and congenic strains derived from A/J and C57BL/6J progenitors. Mamm Genome 16:319–331

    Article  CAS  PubMed  Google Scholar 

  • Godoy-Herrera R (1994) Biometrical analysis of larval digging in Drosophila melanogaster. Behav Genet 24:427–432

    Article  CAS  PubMed  Google Scholar 

  • Goodrick CL (1978) Ethanol selection by inbred mice. Mode of inheritance and the effect of age on the genetic system. J Stud Alcohol 39:19–38

    CAS  PubMed  Google Scholar 

  • Hood HM, Belknap JK, Crabbe JC, Buck KJ (2001) Genomewide search for epistasis in a complex trait: pentobarbital withdrawal convulsions in mice. Behav Genet 31:93–100

    Article  CAS  PubMed  Google Scholar 

  • Kearsey MJ, Pooni HS (1996) The genetical analysis of quantitative traits. Chapman & Hall, London

    Google Scholar 

  • Keppel G, Wickens TD (2004) Design and analysis: a researcher’s handbook, 4th edn. Pearson Prentice-Hall, Upper Saddle River, NJ

    Google Scholar 

  • Kuo PH, Kalsi G, Prescott CA, Hodgkinson CA, Goldman D et al (2008) Association of ADH and ALDH genes with alcohol dependence in the Irish affected sib pair study of alcohol dependence (IASPSAD) sample. Alcohol Clin Exp Res 32:785–795

    Article  CAS  PubMed  Google Scholar 

  • Moore EM, Boehm SL II (2009) Site-specific microinjection of baclofen into the anterior ventral tegmental area reduces binge-like ethanol intake in male C57BL/6J mice. Behav Neurosci 123:555–563

    Article  PubMed  Google Scholar 

  • Mulligan MK, Ponomarev I, Hitzemann RJ, Belknap JK, Tabakoff B et al (2006) Toward understanding the genetics of alcohol drinking through transcriptome meta-analysis. Proc Natl Acad Sci USA 103:6368–6373

    Article  CAS  PubMed  Google Scholar 

  • Palmer AA, Low MJ, Grandy DK, Phillips TJ (2003) Effects of a Drd2 deletion mutation on ethanol-induced locomotor stimulation and sensitization suggest a role for epistasis. Behav Genet 33:311–324

    Article  PubMed  Google Scholar 

  • Rhodes JS, Best K, Belknap JK, Finn DA, Crabbe JC (2005) Evaluation of a simple model of ethanol drinking to intoxication in C57BL/6J mice. Physiol Behav 84:53–63

    Article  CAS  PubMed  Google Scholar 

  • Rhodes JS, Ford MM, Yu CH, Brown LL, Finn DA et al (2007) Mouse inbred strain differences in ethanol drinking to intoxication. Genes Brain Behav 6:1–18

    Article  CAS  PubMed  Google Scholar 

  • Rosenthal R (1994) Parametric measures of effect size. In: Cooper H, Hedges LV (eds) The handbook of research synthesis. Russell Sage Fnd, New York, pp 232–244

    Google Scholar 

  • Schuckit MA (2009) An overview of genetic influences in alcoholism. J Subst Abuse Treat 36:S5–S15

    PubMed  Google Scholar 

  • Short JL, Drago J, Lawrence AJ (2006) Comparison of ethanol preference and neurochemical measures of mesolimbic dopamine and adenosine systems across different strains of mice. Alcohol Clin Exp Res 30:606–620

    Article  CAS  PubMed  Google Scholar 

  • Song MJ, Lewis CK, Lance ER, Chesler EJ, Yordanova RK et al (2009) Reconstructing generalized logical networks of transcriptional regulation in mouse brain from temporal gene expression data. EURASIP J Bioinform Syst Biol, article ID 545176:1–13

    Google Scholar 

  • Tabakoff B, Saba L, Kechris K, Hu W, Finn DA et al (2008) The genomic determinants of alcohol preference in mice. Mann Genome 19:352–365

    Article  CAS  Google Scholar 

  • Thompson RG Jr, Lizardi D, Keyes KM, Hasin DS (2008) Childhood or adolescent parental divorce/separation, parental history of alcohol problems, and offspring lifetime alcohol dependence. Drug Alcohol Depend 98:264–269

    Article  PubMed  Google Scholar 

  • Vadasz C, Saito M, Gyetvai BM, Oros M, Szakall I et al (2007) Mapping of QTLs for oral alcohol self-administration in B6.C and B6.I quasi-congenic RQI strains. Neurochem Res 32:1099–1112

    Article  CAS  PubMed  Google Scholar 

  • Wahlsten D, Bachmanov A, Finn DA, Crabbe JC (2006) Stability of inbred mouse strain differences in behavior and brain size between laboratories and across decades. Proc Natl Acad Sci USA 103:16364–16369

    Article  CAS  PubMed  Google Scholar 

  • Yoneyama N, Crabbe JC, Ford MM, Murillo A, Finn DA (2008) Voluntary ethanol consumption in 22 inbred mouse strains. Alcohol 42:149–160

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Department of Veterans Affairs and by NIAAA grants U01 AA016655, U01 AA013484, and P60 AA010760.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamara J. Phillips.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phillips, T.J., Reed, C., Burkhart-Kasch, S. et al. A method for mapping intralocus interactions influencing excessive alcohol drinking. Mamm Genome 21, 39–51 (2010). https://doi.org/10.1007/s00335-009-9239-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-009-9239-9

Keywords

Navigation