Skip to main content
Log in

Characteristics of the CArG-SRF binding context in mammalian genomes

  • Published:
Mammalian Genome Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Serum response factor (SRF), a member of the MADS family, binds a 10-bp cis element known as the CArG box. However, despite our extensive knowledge of SRF and the CArG box, limited information is available on the CArG-SRF binding context or how CArG flanking sequences are defined. We used statistical tests and computer simulation to find characteristics of the CArG-SRF binding context. Based on the combination of published literature and a search of DBTSS, 150 and 136 functional CArG boxes together with 10 bp flanking on each side were found in mouse and human genomes, respectively. By statistical analysis of the 30 positions we found some new conserved positions of interest (P < 0.005) such as −15, −8, and +8, in addition to the ten highly conserved positions of the CArG box. Intriguingly, studies comparing the flanking positions between consensus CArG boxes and CArG-like boxes showed that there are more conserved positions in the latter. Moreover, CpG content within the CArG-SRF binding context is much higher than that within introns. Collectively, these results suggest that there are some special pre-existing features in the flanking sequences of functional CArG boxes probably contributing to SRF selectively recognizing and binding to the functional CArG from millions of functionless CArG boxes in mammalian genomes. This is a significant step toward understanding the mechanism of transcriptional regulation of SRF-dependent genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alberti S, Krause SM, Kretz O, Philippar U, Lemberger T et al (2005) Neuronal migration in the murine rostral migratory stream requires serum response factor. Proc Natl Acad Sci USA 102:6148–6153

    Article  CAS  PubMed  Google Scholar 

  • Antequera F (2003) Structure, function and evolution of CpG island promoters. Cell Mol Life Sci 60:1647–1658

    Article  CAS  PubMed  Google Scholar 

  • Arsenian S, Weinhold B, Oelgeschlager M, Ruther U, Nordheim A (1998) Serum response factor is essential for mesoderm formation during mouse embryogenesis. EMBO J 17:6289–6299

    Article  CAS  PubMed  Google Scholar 

  • Bell RD, Deane R, Chow N, Long X, Sagare A et al (2009) SRF and myocardin regulate LRP-mediated amyloid-beta clearance in brain vascular cells. Nat Cell Biol 11:143–153

    Article  CAS  PubMed  Google Scholar 

  • Bird AP (1980) DNA methylation and the frequency of CpG in animal DNA. Nucleic Acids Res 8:1499–1504

    Article  CAS  PubMed  Google Scholar 

  • Cen B, Selvaraj A, Prywes R (2004) Myocardin/MKL family of SRF coactivators: key regulators of immediate early and muscle specific gene expression. J Cell Biochem 93:74–82

    Article  CAS  PubMed  Google Scholar 

  • Chai J, Tarnawski AS (2002) Serum response factor: discovery, biochemistry, biological roles and implications for tissue injury healing. J Physiol Pharmacol 53:147–157

    CAS  PubMed  Google Scholar 

  • Cooper SJ, Trinklein ND, Nguyen L, Myers RM (2007) Serum response factor binding sites differ in three human cell types. Genome Res 17:136–144

    Article  CAS  PubMed  Google Scholar 

  • Coulondre C, Miller JH, Farabaugh PJ, Gilbert W (1978) Molecular basis of base substitution hotspots in Escherichia coli. Nature 274:775–780

    Article  CAS  PubMed  Google Scholar 

  • De Folter S, Angenent GC (2006) trans meets cis in MADS science. Trends Plant Sci 11:224–231

    Article  PubMed  Google Scholar 

  • Ehrlich M, Wang RY (1981) 5-Methylcytosine in eukaryotic DNA. Science 212:1350–1357

    Article  CAS  PubMed  Google Scholar 

  • Fleige A, Alberti S, Grobe L, Frischmann U, Geffers R et al (2007) Serum response factor contributes selectively to lymphocyte development. J Biol Chem 282:24320–24328

    Article  CAS  PubMed  Google Scholar 

  • Hendrix JA, Wamhoff BR, McDonald OG, Sinha S, Yoshida T et al (2005) 5′ CArG degeneracy in smooth muscle alpha-actin is required for injury-induced gene suppression in vivo. J Clin Invest 115:418–427

    CAS  PubMed  Google Scholar 

  • Huet A, Parlakian A, Arnaud MC, Glandieres JM, Valat P et al (2005) Mechanism of binding of serum response factor to serum response element. FEBS J 272:3105–3119

    Article  CAS  PubMed  Google Scholar 

  • Iyer D, Chang D, Marx J, Wei L, Olson EN et al (2006) Serum response factor MADS box serine-162 phosphorylation switches proliferation and myogenic gene programs. Proc Natl Acad Sci USA 103:4516–4521

    Article  CAS  PubMed  Google Scholar 

  • Jabbari K, Bernardi G (2004) Cytosine methylation and CpG, TpG (CpA) and TpA frequencies. Gene 333:143–149

    Article  CAS  PubMed  Google Scholar 

  • Joliot V, Demma M, Prywes R (1995) Interaction with RAP74 subunit of TFIIF is required for transcriptional activation by serum response factor. Nature 373:632–635

    Article  CAS  PubMed  Google Scholar 

  • Kemp PR, Metcalfe JC (2000) Four isoforms of serum response factor that increase or inhibit smooth-muscle-specific promoter activity. Biochem J 345(Pt 3):445–451

    Article  CAS  PubMed  Google Scholar 

  • Koegel H, von Tobel L, Schafer M, Alberti S, Kremmer E et al (2009) Loss of serum response factor in keratinocytes results in hyperproliferative skin disease in mice. J Clin Invest 119:899–910

    Article  CAS  PubMed  Google Scholar 

  • Leung S, Miyamoto NG (1989) Point mutational analysis of the human c-fos serum response factor binding site. Nucleic Acids Res 17:1177–1195

    Article  CAS  PubMed  Google Scholar 

  • Long X, Creemers EE, Wang DZ, Olson EN, Miano JM (2007) Myocardin is a bifunctional switch for smooth versus skeletal muscle differentiation. Proc Natl Acad Sci USA 104:16570–16575

    Article  CAS  PubMed  Google Scholar 

  • Mack CP, Thompson MM, Lawrenz-Smith S, Owens GK (2000) Smooth muscle alpha-actin CArG elements coordinate formation of a smooth muscle cell-selective, serum response factor-containing activation complex. Circ Res 86:221–232

    CAS  PubMed  Google Scholar 

  • McDonald OG, Wamhoff BR, Hoofnagle MH, Owens GK (2006) Control of SRF binding to CArG box chromatin regulates smooth muscle gene expression in vivo. J Clin Invest 116:36–48

    Article  CAS  PubMed  Google Scholar 

  • Miano JM (2003) Serum response factor: toggling between disparate programs of gene expression. J Mol Cell Cardiol 35:577–593

    Article  CAS  PubMed  Google Scholar 

  • Miano JM (2008) Deck of CArGs. Circ Res 103:13–15

    Article  CAS  PubMed  Google Scholar 

  • Miano JM, Ramanan N, Georger MA, de Mesy Bentley KL, Emerson RL et al (2004) Restricted inactivation of serum response factor to the cardiovascular system. Proc Natl Acad Sci USA 101:17132–17137

    Article  CAS  PubMed  Google Scholar 

  • Miano JM, Long X, Fujiwara K (2007) Serum response factor: master regulator of the actin cytoskeleton and contractile apparatus. Am J Physiol Cell Physiol 292:C70–C81

    Article  CAS  PubMed  Google Scholar 

  • Nachman MW, Crowell SL (2000) Estimate of the mutation rate per nucleotide in humans. Genetics 156:297–304

    CAS  PubMed  Google Scholar 

  • Niu Z, Yu W, Zhang SX, Barron M, Belaguli NS et al (2005) Conditional mutagenesis of the murine serum response factor gene blocks cardiogenesis and the transcription of downstream gene targets. J Biol Chem 280:32531–32538

    Article  CAS  PubMed  Google Scholar 

  • Parlakian A, Charvet C, Escoubet B, Mericskay M, Molkentin JD et al (2005) Temporally controlled onset of dilated cardiomyopathy through disruption of the SRF gene in adult heart. Circulation 112:2930–2939

    CAS  PubMed  Google Scholar 

  • Patten LC, Belaguli NS, Baek MJ, Fagan SP, Awad SS et al (2004) Serum response factor is alternatively spliced in human colon cancer. J Surg Res 121:92–100

    Article  CAS  PubMed  Google Scholar 

  • Pellegrini L, Tan S, Richmond TJ (1995) Structure of serum response factor core bound to DNA. Nature 376:490–498

    Article  CAS  PubMed  Google Scholar 

  • Petit MM, Lindskog H, Larsson E, Wasteson P, Athley E et al (2008) Smooth muscle expression of lipoma preferred partner is mediated by an alternative intronic promoter that is regulated by serum response factor/myocardin. Circ Res 103:61–69

    Article  CAS  PubMed  Google Scholar 

  • Prywes R, Roeder RG (1987) Purification of the c-fos enhancer-binding protein. Mol Cell Biol 7:3482–3489

    CAS  PubMed  Google Scholar 

  • Rensen SS, Niessen PM, Long X, Doevendans PA, Miano JM et al (2006) Contribution of serum response factor and myocardin to transcriptional regulation of smoothelins. Cardiovasc Res 70:136–145

    Article  CAS  PubMed  Google Scholar 

  • Rozenberg JM, Shlyakhtenko A, Glass K, Rishi V, Myakishev MV et al (2008) All and only CpG containing sequences are enriched in promoters abundantly bound by RNA polymerase II in multiple tissues. BMC Genomics 9:67

    Article  PubMed  Google Scholar 

  • Shaw PE, Schroter H, Nordheim A (1989) The ability of a ternary complex to form over the serum response element correlates with serum inducibility of the human c-fos promoter. Cell 56:563–572

    Article  CAS  PubMed  Google Scholar 

  • Shen X, Walsh B, Li JJ, Pang HX, Wang WJ et al (2009) The correlations of the function and positional distribution of the cis-elements CArG around the TSS in the genes of Mus musculus. Genome 52:217–221

    Article  CAS  PubMed  Google Scholar 

  • Shepelev V, Fedorov A (2006) Advances in the Exon-Intron Database (EID). Brief Bioinform 7:178–185

    Article  CAS  PubMed  Google Scholar 

  • Shore P, Sharrocks AD (1995) The MADS-box family of transcription factors. Eur J Biochem 229:1–13

    Article  CAS  PubMed  Google Scholar 

  • Stepanek J, Vincent M, Turpin PY, Paulin D, Fermandjian S et al (2007) C → G base mutations in the CArG box of c-fos serum response element alter its bending flexibility. Consequences for core-SRF recognition. FEBS J 274:2333–2348

    Article  CAS  PubMed  Google Scholar 

  • Sun Q, Chen G, Streb JW, Long X, Yang Y et al (2006) Defining the mammalian CArGome. Genome Res 16:197–207

    Article  CAS  PubMed  Google Scholar 

  • Treisman R (1986) Identification of a protein-binding site that mediates transcriptional response of the c-fos gene to serum factors. Cell 46:567–574

    Article  CAS  PubMed  Google Scholar 

  • Treisman R (1987) Identification and purification of a polypeptide that binds to the c-fos serum response element. EMBO J 6:2711–2717

    CAS  PubMed  Google Scholar 

  • Treisman R (1992) The serum response element. Trends Biochem Sci 17:423–426

    Article  CAS  PubMed  Google Scholar 

  • Verger A, Duterque-Coquillaud M (2002) When Ets transcription factors meet their partners. Bioessays 24:362–370

    Article  CAS  PubMed  Google Scholar 

  • Wakaguri H, Yamashita R, Suzuki Y, Sugano S, Nakai K (2008) DBTSS: database of transcription start sites, progress report 2008. Nucleic Acids Res 36:D97–D101

    Article  CAS  PubMed  Google Scholar 

  • Walser JC, Ponger L, Furano AV (2008) CpG dinucleotides and the mutation rate of non-CpG DNA. Genome Res 18:1403–1414

    Article  CAS  PubMed  Google Scholar 

  • Workman CT, Yin Y, Corcoran DL, Ideker T, Stormo GD et al (2005) enoLOGOS: a versatile web tool for energy normalized sequence logos. Nucleic Acids Res 33:W389–W392

    Article  CAS  PubMed  Google Scholar 

  • Yates F (1934) Contingency tables involving small numbers and the χ2 test. J R Stat Soc 1:217–235

    Google Scholar 

  • Zhang SX, Garcia-Gras E, Wycuff DR, Marriot SJ, Kadeer N et al (2005) Identification of direct serum-response factor gene targets during Me2SO-induced P19 cardiac cell differentiation. J Biol Chem 280:19115–19126

    Article  CAS  PubMed  Google Scholar 

  • Zhu H, Joliot V, Prywes R (1994) Role of transcription factor TFIIF in serum response factor-activated transcription. J Biol Chem 269:3489–3497

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Zhuoran Huang, Mingjing Zhang, Xiaoqian Jiang, and Hongxia Pang at the Bioinformatics Center of Northwest A&F University for many useful discussions. We also thank Professor Zhao Xu at the College of Science of Northwest A&F University for his suggestions on the χ2 test. We are also grateful to Donna Elizabeth at the Department of Foreign Languages of Northwest A&F University and Associate Professor Mengjun Liu at the College of Agronomy of Northwest A&F University for correcting the English version of the manuscript. Finally, we thank the anonymous reviewers for their insightful suggestions and criticisms.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiheng Tao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TXT 9 kb)

Supplementary material 2 (TXT 1 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, W., Shen, X. & Tao, S. Characteristics of the CArG-SRF binding context in mammalian genomes. Mamm Genome 21, 104–113 (2010). https://doi.org/10.1007/s00335-009-9238-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-009-9238-x

Keywords

Navigation