Skip to main content

Advertisement

Log in

Mice hypomorphic for Atr have increased DNA damage and abnormal checkpoint response

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

The ATR checkpoint pathway responds to DNA damage during the S/G2 phases of the cell cycle and is activated early in tumorigenesis. Investigation of ATR’s role in development and tumorigenesis is complicated by the lethality of homozygous knockout mice and the limited effects of heterozygous deficiency. To overcome this limitation, we sought to create mice with a hypomorphic Atr mutation based on the ATR mutation in the human disease Seckel syndrome-1 (SCKL1). Homozygous SCKL1 mice were generated by targeted knock-in of the A → G SCKL1 mutation. Western blot and RT-PCR analysis established that homozygotes have no reduction in Atr protein or increase in missplicing as is seen in humans. Thus, the A → G substitution alone is not sufficient to reproduce in mice the effects that are seen in humans. However, homozygous SCKL1 mice that retain the neo cassette used for targeting have an estimated 66-82% reduction in total Atr protein levels due to missplicing into the neo cassette. Under conditions of APH-induced replication stress, primary fibroblasts from homozygous mice displayed an increase in overall chromosome damage and an increase in gaps and breaks at specific common fragile sites. In addition, mutant cells display a significant delay in checkpoint induction and an increase in DNA damage as assayed by Chk1 phosphorylation and γ-H2ax levels, respectively. These mice provide a novel model system for studies of Atr deficiency and replication stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abraham RT (2001) Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev 15:2177–2196

    Article  PubMed  CAS  Google Scholar 

  • Alderton GK, Joenje H, Varon R, Borglum AD, Jeggo PA et al (2004) Seckel syndrome exhibits cellular features demonstrating defects in the ATR-signalling pathway. Hum Mol Genet 13:3127–3138

    Article  PubMed  CAS  Google Scholar 

  • Auerbach W, Dunmore JH, Fairchild-Huntress V, Fang Q, Auerbach AB et al (2000) Establishment and chimera analysis of 129/SvEv- and C57BL/6-derived mouse embryonic stem cell lines. Biotechniques 29:1024–1028, 1030, 1032

    PubMed  CAS  Google Scholar 

  • Bakkenist CJ, Kastan MB (2003) DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421:499–506

    Article  PubMed  CAS  Google Scholar 

  • Brown EJ, Baltimore D (2000) ATR disruption leads to chromosomal fragmentation and early embryonic lethality. Genes Dev 14:397–402

    PubMed  CAS  Google Scholar 

  • Burma S, Chen BP, Murphy M, Kurimasa A, Chen DJ (2001) ATM phosphorylates histone H2AX in response to DNA double-strand breaks. J Biol Chem 276:42462–42467

    Article  PubMed  CAS  Google Scholar 

  • Casper AM, Nghiem P, Arlt MF, Glover TW (2002) ATR regulates fragile site stability. Cell 111:779–789

    Article  PubMed  CAS  Google Scholar 

  • Casper AM, Durkin SG, Arlt MF, Glover TW (2004) Chromosomal instability at common fragile sites in Seckel syndrome. Am J Hum Genet 75:654–660

    Article  PubMed  CAS  Google Scholar 

  • Cortez D, Guntuku S, Qin J, Elledge SJ (2001) ATR and ATRIP: partners in checkpoint signaling. Science 294:1713–1716

    Article  PubMed  CAS  Google Scholar 

  • Fang Y, Tsao CC, Goodman BK, Furumai R, Tirado CA et al (2004) ATR functions as a gene dosage-dependent tumor suppressor on a mismatch repair-deficient background. EMBO J 23:3164–3174

    Article  PubMed  CAS  Google Scholar 

  • Goodship J, Gill H, Carter J, Jackson A, Splitt M et al (2000) Autozygosity mapping of a Seckel syndrome locus to chromosome 3q22. 1–q24. Am J Hum Genet 67:498–503

    Article  PubMed  CAS  Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  PubMed  CAS  Google Scholar 

  • Hughes ED, Qu YY, Genik SJ, Lyons RH, Pacheco CD et al (2007) Genetic variation in C57BL/6 ES cell lines and genetic instability in the Bruce4 C57BL/6 ES cell line. Mamm Genome 18:549–558

    Article  PubMed  CAS  Google Scholar 

  • Jazayeri A, Falck J, Lukas C, Bartek J, Smith GC et al (2006) ATM- and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks. Nat Cell Biol 8:37–45

    Article  PubMed  CAS  Google Scholar 

  • Lakin ND, Hann BC, Jackson SP (1999) The ataxia-telangiectasia related protein ATR mediates DNA-dependent phosphorylation of p53. Oncogene 18:3989–3995

    Article  PubMed  CAS  Google Scholar 

  • Lee MY, Tan TD, Feng AC, Liu MC (2006) Clinicopathological analysis of 598 malignant lymphomas in Taiwan: seven-year experience in a single institution. Am J Hematol 81:568–575

    Article  PubMed  Google Scholar 

  • Levin SI, Meisler MH (2004) Floxed allele for conditional inactivation of the voltage-gated sodium channel Scn8a (NaV1.6). Genesis 39:234–239

    Article  PubMed  CAS  Google Scholar 

  • Lewis KA, Mullany S, Thomas B, Chien J, Loewen R et al (2005) Heterozygous ATR mutations in mismatch repair-deficient cancer cells have functional significance. Cancer Res 65:7091–7095

    Article  PubMed  CAS  Google Scholar 

  • Liu Q, Guntuku S, Cui XS, Matsuoka S, Cortez D et al (2000) Chk1 is an essential kinase that is regulated by Atr and required for the G(2)/M DNA damage checkpoint. Genes Dev 14:1448–1459

    Article  PubMed  CAS  Google Scholar 

  • Matsuoka S, Rotman G, Ogawa A, Shiloh Y, Tamai K et al (2000) Ataxia telangiectasia-mutated phosphorylates Chk2 in vivo and in vitro. Proc Natl Acad Sci USA 97:10389–10394

    Article  PubMed  CAS  Google Scholar 

  • Menoyo A, Alazzouzi H, Espin E, Armengol M, Yamamoto H et al (2001) Somatic mutations in the DNA damage-response genes ATR and CHK1 in sporadic stomach tumors with microsatellite instability. Cancer Res 61:7727–7730

    PubMed  CAS  Google Scholar 

  • Meyers EN, Lewandoski M, Martin GR (1998) An Fgf8 mutant allelic series generated by Cre- and Flp-mediated recombination. Nat Genet 18:136–141

    Article  PubMed  CAS  Google Scholar 

  • Myers JS, Cortez D (2006) Rapid activation of ATR by ionizing radiation requires ATM and Mre11. J Biol Chem 281:9346–9350

    Article  PubMed  CAS  Google Scholar 

  • Nagy A, Moens C, Ivanyi E, Pawling J, Gertsenstein M et al (1998) Dissecting the role of N-myc in development using a single targeting vector to generate a series of alleles. Curr Biol 8:661–664

    Article  PubMed  CAS  Google Scholar 

  • O’Driscoll M, Ruiz-Perez VL, Woods CG, Jeggo PA, Goodship JA (2003) A splicing mutation affecting expression of ataxia-telangiectasia and Rad3-related protein (ATR) results in Seckel syndrome. Nat Genet 33:497–501

    Article  PubMed  Google Scholar 

  • O’Driscoll M, Dobyns WB, van Hagen JM, Jeggo PA (2007) Cellular and clinical impact of haploinsufficiency for genes involved in ATR signaling. Am J Hum Genet 81:77–86

    Article  PubMed  Google Scholar 

  • Ozeri-Galai E, Schwartz M, Rahat A, Kerem B (2008) Interplay between ATM and ATR in the regulation of common fragile site stability. Oncogene 27:2109–2117

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez CI, Buchholz F, Galloway J, Sequerra R, Kasper J et al (2000) High-efficiency deleter mice show that FLPe is an alternative to Cre-loxP. Nat Genet 25:139–140

    Article  PubMed  CAS  Google Scholar 

  • Ruzankina Y, Pinzon-Guzman C, Asare A, Ong T, Pontano L et al (2007) Deletion of the developmentally essential gene ATR in adult mice leads to age-related phenotypes and stem cell loss. Cell Stem Cell 1:113–126

    Article  PubMed  CAS  Google Scholar 

  • Shiloh Y (2006) The ATM-mediated DNA-damage response: taking shape. Trends Biochem Sci 31:402–410

    Article  PubMed  CAS  Google Scholar 

  • Smith L, La Thangue NB (2005) Signalling DNA damage by regulating p53 co-factor activity. Cell Cycle 4:30–32

    PubMed  CAS  Google Scholar 

  • Stiff T, Walker SA, Cerosaletti K, Goodarzi AA, Petermann E et al (2006) ATR-dependent phosphorylation and activation of ATM in response to UV treatment or replication fork stalling. EMBO J 25:5775–5782

    Article  PubMed  CAS  Google Scholar 

  • Vassileva V, Millar A, Briollais L, Chapman W, Bapat B (2002) Genes involved in DNA repair are mutational targets in endometrial cancers with microsatellite instability. Cancer Res 62:4095–4099

    PubMed  CAS  Google Scholar 

  • Ward IM, Chen J (2001) Histone H2AX is phosphorylated in an ATR-dependent manner in response to replicational stress. J Biol Chem 276:47759–47762

    Article  PubMed  CAS  Google Scholar 

  • Wilke CM, Hall BK, Hoge A, Paradee W, Smith DI et al (1996) FRA3B extends over a broad region and contains a spontaneous HPV16 integration site: direct evidence for the coincidence of viral integration sites and fragile sites. Hum Mol Genet 5:187–195

    Article  PubMed  CAS  Google Scholar 

  • Zhao H, Piwnica-Worms H (2001) ATR-mediated checkpoint pathways regulate phosphorylation and activation of human Chk1. Mol Cell Biol 21:4129–4139

    Article  PubMed  CAS  Google Scholar 

  • Zhou BB, Elledge SJ (2000) The DNA damage response: putting checkpoints in perspective. Nature 408:433–439

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Sally Camper and David Ferguson for their assistance and advice in critically reading the manuscript. We thank Matthew Butler for his time and technical assistance. This work was made possible by support from the National Institutes of Health grant CA43222 and the John and Suzanne Munn Research Fund from the University of Michigan Comprehensive Cancer Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas W. Glover.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

Splicing pattern observed by RT-PCR from normal mouse total mRNA.(A) PCR scheme used for detection of misspliced products lacking exon 9. Primers used are labeled p4 and p5. (B) Agarose gel showing both normal and misspliced product lacking exon 9. (C) Junction sequences between exons 8, 9, and 10 in the normal splice form and exons 8 and 10 in the misspliced form lacking exon 9 (TIFF 1934 kb)

Supplementary Fig. 2

A representative partial metaphase spread from AtrSckN/SckN tail fibroblasts with FISH probes to the common fragile sites Fra14A2 and Fra8E1 shown in red and green, respectively. Both FRA14A2 loci show fragile site breaks and the leftmost Fra8E1 locus is broken in this example (TIFF 2300 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ragland, R.L., Arlt, M.F., Hughes, E.D. et al. Mice hypomorphic for Atr have increased DNA damage and abnormal checkpoint response. Mamm Genome 20, 375–385 (2009). https://doi.org/10.1007/s00335-009-9195-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-009-9195-4

Keywords

Navigation