Skip to main content
Log in

Molecular characterization of the Himalayan mink

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

A rare color variant of the American mink (Neovison vison), discovered on a ranch in Nova Scotia and referred to as the “marbled” variety, carries a distinctive pigment distribution pattern resembling that found in some other species, e.g., the Siamese cat and the Himalayan mouse. We tested the hypothesis that the color pattern in question—light-colored body with dark-colored points (ears, face, tail, and feet)—is due to a mutation in the melanin-producing enzyme tyrosinase (TYR) that results in temperature-sensitive pigment production. Our study shows that marbled mink carry a mutation in exon 4 of the TYR gene (c.1835C > G) which results in an amino acid substitution (p.H420Q). The location of this substitution corresponds to the amino acid position that is also mutated in the TYR protein of the Himalayan mouse. Thus, the marbled variant is more aptly referred to as the Himalayan mink.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aigner B, Besenfelder U, Müller M, Brem G (2000) Tyrosinase gene variants in different rabbit strains. Mamm Genome 11:700–702

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Anistoroaei R, Fredholm M, Christensen K, Leeb T (2008) Albinism in the American mink (Neovison vison) is associated with a tyrosinase nonsense mutation. Anim Genet 39:645–648

    Article  PubMed  CAS  Google Scholar 

  • Benkel BF, Fong Y (1996) Long range-inverse PCR (LR-IPCR): extending the useful range of inverse PCR. Genet Anal 13:123–127

    PubMed  CAS  Google Scholar 

  • Blaszczyk WM, Distler C, Dekomien G, Arning L, Hoffman K-P et al (2007) Identification of a tyrosinase (TYR) exon 4 deletion in albino ferrets (Mustela putorius furo). Anim Genet 38:421–423

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Borron JC, Solano F (2002) Molecular anatomy of tyrosinase and its related proteins: beyond the histidine-bound metal catalytic center. Pigment Cell Res 15:162–173

    Article  PubMed  CAS  Google Scholar 

  • Giebel LB, Tripathi RK, King RA, Spritz RA (1991) A tyrosinase gene missense mutation in temperature-sensitive type I oculocutaneous albinism. A human homologue to the Siamese can and the Himalayan mouse. J Clin Invest 87:1119–1122

    Article  PubMed  CAS  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Kidson SH, Fabian BC (1981) The effect of temperature on tyrosinase activity in Himalayan mouse skin. J Exp Zool 215:91–97

    Article  PubMed  CAS  Google Scholar 

  • Kwon BS, Halaban R, Chintamaneni C (1989) Molecular basis of the mouse Himalayan mutation. Biochem Biophys Res Commun 161:252–260

    Article  PubMed  CAS  Google Scholar 

  • Lyons LA, Imes DL, Rah HC, Grahn RA (2005) Tyrosinase mutations associated with Siamese and Burmese patterns in the domestic cat (Felis catus). Anim Genet 36:119–126

    Article  PubMed  CAS  Google Scholar 

  • Petrij F, van Veen K, Mettler M, Bruckmann V (2001) A second acromegalistic allelomorph at the albino locus of the Mongolian gerbil (Meriones unguiculatus). J Hered 92:74–78

    Article  PubMed  CAS  Google Scholar 

  • Schmidt-Küntzel A, Eizirik E, O’Brien SJ, Menotti-Raymond M (2005) Tyrosinase and tyrosinase-related protein 1 alleles specify domestic cat color phenotypes of the albino and brown loci. J Hered 96:289–301

    Article  PubMed  Google Scholar 

  • Schweikardt T, Olivares C, Solano F, Jaenicke E, Garcia-Borron JC et al (2007) A three-dimensional model of mammalian tyrosinase active site accounting for loss of function mutations. Pigment Cell Res 20:394–401

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully thank Mr. Ron Barr for providing samples of Himalayan mink, Tanya Muggeridge and Amanda Smith for technical assistance, and the Canada Research Chairs program (www.Chairs.gc.ca) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard F. Benkel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benkel, B.F., Rouvinen-Watt, K., Farid, H. et al. Molecular characterization of the Himalayan mink. Mamm Genome 20, 256–259 (2009). https://doi.org/10.1007/s00335-009-9177-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-009-9177-6

Keywords

Navigation