Skip to main content
Log in

Genetic analysis of the psychostimulant effects of nicotine in chromosome substitution strains and F2 crosses derived from A/J and C57BL/6J progenitors

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

Previous research utilizing the AcB/BcA recombinant congenic strains (RCS) of mice mapped provisional quantitative trait loci (QTLs) for the psychostimulant effects of nicotine to multiple regions on chromosomes 7, 11, 12, 14, 16, and 17. The current study was designed to confirm these QTLs in an A/J (A) × C57Bl/6J (B6) F2 cross and a panel of B6.A chromosome substitution strains (CSS). The panel of B6.A CSS consists of 21 strains, each carrying a different A/J chromosome on a B6 background. The A × B6 F2, CSS, A, and B6 mice were tested for sensitivity to the effects of nicotine on locomotor activity using a computerized open-field apparatus. In A × B6 F2 mice two QTLs were identified which confirm those previously observed in the AcB/BcA RCS. Significant differences in the expression of nicotine-induced activity were associated with loci on chromosome 11 (D11Mit62) and chromosome 16 (D16Mit131) in the A × B6 F2. At the chromosome 11 QTL, an A allele was associated with lower nicotine-induced activity scores relative to the B6. In contrast, the A allele was associated with greater relative nicotine activity values for the chromosome 16 QTL. A survey of the CSS panel confirmed the presence of QTLs for nicotine activation on chromosomes 2, 14, 16, and 17 previously identified in the AcB/BcA RCS. In the informative CSS strains, A alleles were consistently associated with greater nicotine-induced activity scores compared to the B6. The results of the present study are the first to validate QTLs for sensitivity to the effects of nicotine across multiple strains of mice. QTLs on chromosomes 2, 11, 14, 16, and 17 were confirmed in CSS and/or F2 mice. Significantly, the identification of a QTL on chromosome 16 has now been replicated in three crosses derived from the A and B6 progenitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ashby CR Jr, Paul M, Gardner EL, Gerasimov MR, Dewey SL et al (2002) Systemic administration of 1R, 4S-4-amino-cyclopent-2-ene-carboxylic acid, a reversible inhibitor of GABA transaminase, blocks expression of conditioned place preference to cocaine and nicotine in rats. Synapse 44(2):61–63

    Article  PubMed  CAS  Google Scholar 

  • Belknap JK (2003) Chromosome substitution strains: some quantitative considerations for genome scans and fine mapping. Mamm Genome 14:723–732

    Article  PubMed  Google Scholar 

  • Buck KJ (1995) Strategies for mapping and identifying quantitative trait loci specifying behavioral responses to alcohol. Alcohol Clin Exp Res 19(4):795–801

    Article  PubMed  CAS  Google Scholar 

  • Dewey SL, Brodie JD, Gerasimov M, Horan B, Gardner EL et al (1999) A pharmacologic strategy for the treatment of nicotine addiction. Synapse 31(1):76–86

    Article  PubMed  CAS  Google Scholar 

  • DiPetrillo K, Wang X, Stylianou IM, Paigen B (2005) Bioinformatics toolbox for narrowing rodent quantitative trait loci. Trends Genet 21(12):683–692

    Article  PubMed  CAS  Google Scholar 

  • Ehlers CL, Wilhelmsen KC (2007) Genomic screen for substance dependence and body mass index in southwest California Indians. Genes Brain Behav 6(2):184–191

    Article  PubMed  Google Scholar 

  • Flint J, Valdar W, Shifman S, Mott R (2005) Strategies for mapping and cloning quantitative trait genes in rodents. Nat Rev Genet 6(4):271–286

    Article  PubMed  CAS  Google Scholar 

  • Gelernter J, Liu X, Hesselbrock V, Page GP, Goddard A et al (2004) Results of a genomewide linkage scan: support for chromosomes 9 and 11 loci increasing risk for cigarette smoking. Am J Med Genet B Neuropsychiatr Genet 128B(1):94–101

    Article  PubMed  Google Scholar 

  • Gelernter J, Panhuysen C, Weiss R, Brady K, Poling J et al (2007) Genomewide linkage scan for nicotine dependence: identification of a chromosome 5 risk locus. Biol Psychiatry 61(1):119–126

    Article  PubMed  CAS  Google Scholar 

  • Gill K, Boyle AE (2005) Genetic analysis of alcohol intake in recombinant inbred and congenic strains derived from A/J and C57BL/6J progenitors. Mamm Genome 16(5):319–331

    Article  PubMed  CAS  Google Scholar 

  • Goode EL, Badzioch MD, Kim H, Gagnon F, Rozek LS et al (2003) Multiple genome-wide analyses of smoking behavior in the Framingham Heart Study. BMC Genet 4 Suppl 1:S102

    Article  PubMed  Google Scholar 

  • Hofstetter JR, Zhang A, Mayeda AR, Guscar T, Nurnberger JI Jr et al (1997) Genomic DNA from mice: a comparison of recovery methods and tissue sources. Biochem Mol Med 62(2):197–202

    Article  PubMed  CAS  Google Scholar 

  • Lander E, Kruglyak L (1995) Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet 11:241–247

    Article  PubMed  CAS  Google Scholar 

  • Li MD, Ma JZ, Cheng R, Dupont RT, Williams NJ et al (2003) A genome-wide scan to identify loci for smoking rate in the Framingham Heart Study population. BMC Genet 4 Suppl 1:S103

    Article  PubMed  Google Scholar 

  • Li MD, Sun D, Lou XY, Beuten J, Payne TJ et al (2007a) Linkage and association studies in African- and Caucasian-American populations demonstrate that SHC3 is a novel susceptibility locus for nicotine dependence. Mol Psychiatry 12(5):462–473

    PubMed  CAS  Google Scholar 

  • Li MD, Lou XY, Chen G, Ma JZ, Elston RC (2008) Gene-gene interactions among CHRNA4, CHRNB2, BDNF, and NTRK2 in nicotine dependence. Biol Psychiatry 64(11):951–957

    Article  PubMed  CAS  Google Scholar 

  • Li XC, Karadsheh MS, Jenkins PM, Brooks JC, Drapeau JA et al (2007b) Chromosomal loci that influence oral nicotine consumption in C57BL/6J × C3H/HeJ F2 intercross mice. Genes Brain Behav 6(5):401–410

    Article  PubMed  CAS  Google Scholar 

  • Mackiewicz M, Paigen B, Naidoo N, Pack AI (2008) Analysis of the QTL for sleep homeostasis in mice: Homer1a is a likely candidate. Physiol Genomics 33(1):91–99

    Article  PubMed  CAS  Google Scholar 

  • Manly KF, Cudmore RH Jr, Meer JM (2001) Map Manager QTX, cross-platform software for genetic mapping. Mamm Genome 12:930–932

    Article  PubMed  CAS  Google Scholar 

  • Nadeau JH, Singer JB, Matin A, Lander ES (2000) Analysing complex genetic traits with chromosome substitution strains. Nat Genet 24:221–225

    Article  PubMed  CAS  Google Scholar 

  • Portugal GS, Gould TJ (2008) Genetic variability in nicotinic acetylcholine receptors and nicotine addiction: converging evidence from human and animal research. Behav Brain Res 193(1):1–16

    Article  PubMed  CAS  Google Scholar 

  • Schiffer WK, Marsteller D, Dewey SL (2003) Sub-chronic low dose gamma-vinyl GABA (vigabatrin) inhibits cocaine-induced increases in nucleus accumbens dopamine. Psychopharmacology 168(3):339–343

    Article  PubMed  CAS  Google Scholar 

  • Singer JB, Hill AE, Burrage LC, Olszens KR, Song J et al (2004) Genetic dissection of complex traits with chromosome substitution strains of mice. Science 304(5669):445–448

    Article  PubMed  CAS  Google Scholar 

  • Stallings MC, Hewitt JK, Beresford T, Heath AC, Eaves LJ (1999) A twin study of drinking and smoking onset and latencies from first use to regular use. Behav Genet 29(6):409–421

    Article  PubMed  CAS  Google Scholar 

  • Stromberg MF, Mackler SA, Volpicelli JR, O’Brien CP, Dewey SL (2001) The effect of gamma-vinyl-GABA on the consumption of concurrently available oral cocaine and ethanol in the rat. Pharmacol Biochem Behav 68(2):291–299

    Article  PubMed  CAS  Google Scholar 

  • Stylianou IM, Tsaih SW, DiPetrillo K, Ishimori N, Li R et al (2006) Complex genetic architecture revealed by analysis of high-density lipoprotein cholesterol in chromosome substitution strains and F2 crosses. Genetics 174(2):999–1007

    Article  PubMed  CAS  Google Scholar 

  • True WR, Xian H, Scherrer JF, Madden PA, Bucholz KK et al (1999) Common genetic vulnerability for nicotine and alcohol dependence in men. Arch Gen Psychiatry 56(7):655–661

    Article  PubMed  CAS  Google Scholar 

  • Vink JM, Willemsen G, Boomsma DI (2005) Heritability of smoking initiation and nicotine dependence. Behav Genet 35(4):397–406

    Article  PubMed  Google Scholar 

  • Wang S, Basten CJ, Zeng ZB (2006) Windows QTL Cartographer 2.5, Department of Statistics. North Carolina State University, Raleigh, NC

    Google Scholar 

  • Wise RA (2004) Dopamine, learning and motivation. Nat Rev Neurosci 5(6):48–94

    Article  Google Scholar 

  • Wise RA, Rompre PP (1989) Brain dopamine and reward. Annu Rev Psychol 40:191–225

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This research was supported by funds awarded to K. J. Gill from the Canadian Institutes of Health Research (CIHR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathryn J. Gill.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boyle, A.E., Gill, K.J. Genetic analysis of the psychostimulant effects of nicotine in chromosome substitution strains and F2 crosses derived from A/J and C57BL/6J progenitors. Mamm Genome 20, 34–42 (2009). https://doi.org/10.1007/s00335-008-9159-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-008-9159-0

Keywords

Navigation