Skip to main content
Log in

Imprinted noncoding RNAs

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

Imprinted genes are silenced in a parental-specific manner and tend to occur in clusters. All well-characterised imprinted clusters contain noncoding RNAs that are silenced according to parental origin. These can be broadly classified into long noncoding RNAs and short regulatory RNAs. Functional testing has shown that long noncoding RNAs can be crucial imprinting elements and act in cisf throughout the cluster to silence protein-coding genes. Whether silencing occurs via transcription of the noncoding RNA or the actual transcript is not clear. The short regulatory RNAs, both small nucleolar RNAs and microRNAs, act in trans, generally outside the cluster from which they arise. As these RNAs are expressed according to parental origin, the regulation of their targets is also parental-specific. We review knowledge of imprinted noncoding RNAs and models for how they function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Albrecht U, Sutcliffe JS, Cattanach BM, Beechey CV, Armstrong D et al (1997) Imprinted expression of the murine Angelman syndrome gene, Ube3a, in hippocampal and Purkinje neurons. Nat Genet 17:75–78

    Article  CAS  PubMed  Google Scholar 

  • Bastepe M, Fröhlich LF, Linglart A, Abu-Zahra HS, Tojo K et al (2005) Deletion of the NESP55 differentially methylated region causes loss of maternal GNAS imprints and pseudohypoparathyroidism type Ib. Nat Genet 37:25–27

    Article  CAS  PubMed  Google Scholar 

  • Bernstein E, Caudy AA, Hammond SM, Hannon GJ (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409:363–366

    Article  CAS  PubMed  Google Scholar 

  • Bracht J, Hunter S, Eachus R, Weeks P, Pasquinelli AE (2004) Trans-splicing and polyadenylation of let-7 microRNA primary transcripts. RNA 10:1586–1594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braidotti G, Baubec T, Pauler F, Seidl C, Smrzka O et al (2004) The Air noncoding RNA: an imprinted cis-silencing transcript. Cold Spring Harb Symp Quant Biol 69:55–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai X, Cullen BR (2007) The imprinted H19 noncoding RNA is a primary microRNA precursor. RNA 13:313–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai X, Hagedorn CH, Cullen BR (2004) Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 10:1957–1966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cavaillé J, Buiting K, Kiefmann M, Lalande M, Brannan CI et al (2000) Identification of brain-specific and imprinted small nucleolar RNA genes exhibiting an unusual genomic organization. Proc Natl Acad Sci U S A 97:14311–14316

    Article  PubMed  PubMed Central  Google Scholar 

  • Chamberlain SJ, Brannan CI (2001) The Prader-Willi syndrome imprinting center activates the paternally expressed murine Ube3a antisense transcript but represses paternal Ube3a. Genomics 73:316–322

    Article  CAS  PubMed  Google Scholar 

  • Coombes C, Arnaud P, Gordon E, Dean W, Coar EA et al (2003) Epigenetic properties and identification of an imprint mark in the Nesp-Gnasxl domain of the mouse Gnas imprinted locus. Mol Cell Biol 23:5475–5488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis E, Caiment F, Tordoir X, Cavaille J, Ferguson-Smith A et al (2005) RNAi-mediated allelic trans-interaction at the imprinted Rtl1/Peg11 locus. Curr Biol 15:743–749

    Article  CAS  PubMed  Google Scholar 

  • Ding F, Li HH, Zhang S, Solomon NM, Camper SA et al (2008) SnoRNA Snord116 (Pwcr1/MBII-85) deficiency causes growth deficiency and hyperphagia in mice. PLoS ONE 3:e1709

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Edwards CA, Ferguson-Smith AC (2007) Mechanisms regulating imprinted genes in clusters. Curr Opinion Cell Biol 19:281–289

    Article  CAS  PubMed  Google Scholar 

  • Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9:102–114

    Article  CAS  PubMed  Google Scholar 

  • Fitzpatrick GV, Soloway PD, Higgins MJ (2002) Regional loss of imprinting and growth deficiency in mice with a targeted deletion of KvDMR1. Nat Genet 32:426–431

    Article  CAS  PubMed  Google Scholar 

  • Glazov EA, McWilliam S, Barris WC, Dalrymple BP (2008) Origin, evolution, and biological role of miRNA cluster in DLK-DIO3 genomic region in placental mammals. Mol Biol Evol 25:939–948

    Article  CAS  PubMed  Google Scholar 

  • Haussecker D, Proudfoot NJ (2005) Dicer-dependent turnover of intergenic transcripts from the human beta-globin gene cluster. Mol Cell Biol 25:9724–9733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holmes R, Williamson C, Peters J, Denny P, Group RIKENGER et al (2003) A comprehensive transcript map of the mouse Gnas imprinted complex. Genome Res 13:1410–1415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huynh KD, Lee JT (2003) Inheritance of a pre-inactivated paternal X Chr in early mouse embryos. Nature 426:857–862

    Article  CAS  PubMed  Google Scholar 

  • Johnstone KA, DuBose AJ, Futtner CR, Elmore MD, Brannan CI et al (2006) A human imprinting centre demonstrates conserved acquisition but diverged maintenance of imprinting in a mouse model for Angelman syndrome imprinting defects. Hum Mol Genet 15:393–404

    Article  CAS  PubMed  Google Scholar 

  • Kanellopoulou C, Muljo SA, Kung AL, Ganesan S, Drapkin R et al (2005) Dicer-deficient mouse embryonic stem cells are deficient in differentiation and centromeric silencing. Genes Dev 19:489–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ketting RF, Fischer SE, Bernstein E, Sijen T, Hannon GJ et al (2001) Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev 15:2654–2659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiss T (2002) Small nucleolar RNAs:an abundant group of noncoding RNAs with diverse cellular function. Cell 109:145–148

    CAS  PubMed  Google Scholar 

  • Kuramochi-Miyagawa S, Watanabe T, Gotoh K, Totoki Y, Toyoda A et al (2008) DNA methylation of retrotransposon genes is regulated by Piwi family members MILI and MIWI2 in murine fetal testes. Genes Dev 22:908–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landers M, Bancescu DL, Le Meur E, Rougeulle C, Glatt-Deeley H et al (2004) Regulation of the large ( 1000 kb) imprinted murine Ube3a antisense transcript by alternative exons upstream of Snurf/Snrpn. Nucleic Acids Res 32:3480–3492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Meur E, Watrin F, Landers M, Sturny R, Lalande M et al (2005) Dynamic developmental regulation of the large non-coding RNA associated with the mouse 7C imprinted chromosomal region. Dev Biol 286:587–600

    Article  CAS  PubMed  Google Scholar 

  • Lee JT, Davidow LS, Warshawsky D (1999) Tsix, a gene antisense to Xist at the X-inactivation centre. Nat Genet 21:400–404

    Article  CAS  PubMed  Google Scholar 

  • Lee JW, Choi CH, Choi JJ, Park YA, Kim SJ et al (2008) Altered microRNA expression in cervical carcinomas. Clin Cancer Res 14:2535–2542

    Article  CAS  PubMed  Google Scholar 

  • Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    Article  CAS  PubMed  Google Scholar 

  • Lee Y, Kim M, Han J, Yeom KH, Lee S et al (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23:4051–4060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis A, Reik W (2006) How imprinting centres work. Cytogenet Genome Res 113:81–89

    Article  CAS  PubMed  Google Scholar 

  • Lewis A, Mitsuya K, Umlauf D, Smith P, Dean W et al (2004) Imprinting on distal Chr in the placenta involves repressive histone methylation independent of DNA methylation. Nat Genet 36:1291–1295

    Article  CAS  PubMed  Google Scholar 

  • Lewis A, Green K, Dawson C, Redrup L, Huynh KD et al (2006) Epigenetic dynamics of the Kcnq1 imprinted domain in the early embryo. Development 133:4203–4210

    Article  CAS  PubMed  Google Scholar 

  • Lin S, Youngson N, Takada S, Seitz H, Reik W et al (2003) Asymmetric regulation of imprinting on the maternal and paternal Chrs at the Dlk1-Gtl2 imprinted cluster on mouse Chr 12. Nat Genet 35:97–102

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Yu S, Litman D, Chen W, Weinstein LS (2000) Identification of a methylation imprint mark within the mouse Gnas locus. Mol Cell Biol 20:5808–5817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Chen M, Deng C, Bourc’his D, Nealon JG et al (2005) Identification of the control region for tissue-specific imprinting of the G protein alpha-subunit. Proc Natl Acad Sci USA 102:5513–5518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lyle R, Watanabe D, te Vruchte D, Lerchner W, Smrzka OW et al (2000) The imprinted antisense RNA at the Igf2r locus overlaps but does not imprint Mas1. Nat Genet 25:19–21

    Article  CAS  PubMed  Google Scholar 

  • Mancini-DiNardo D, Steele SJS, Levorse JM, Ingram RS, Tilghman (2006) Elongation of the Kcnq1ot1 transcript is required for genomic imprinting of neighbouring genes. Genes Dev 20:1268–1282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mak W, Nesterova TB, de Napoles M, Appanah R, Otte AP et al (2004) Reactivation of the paternal X Chr in early mouse embryos. Science 303:666–669

    Article  CAS  PubMed  Google Scholar 

  • Mineno J, Okamoto S, Ando T, Sato M, Chono H et al (2006) The expression profile of microRNAs in mouse embryos. Nucleic Acids Res 34:1765–1771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murchison EP, Hannon GJ (2004) miRNAs on the move: miRNA biogenesis and the RNAi machinery. Curr Opin Cell Biol 16:223–229

    Article  CAS  PubMed  Google Scholar 

  • Navarro P, Pichard S, Ciaudo C, Avner P, Rougeulle C (2005) Tsix transcription across the Xist gene alters chromatin conformation without affecting Xist transcription: implications for X-Chr inactivation. Genes Dev 19:1474–1484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nomura T, Kimura M, Horii T, Morita S, Soejima H et al (2008) MeCP2-dependent repression of an imprinted miR-184 released by depolarization. Hum Mol Genet 17:1192–1199

    Article  CAS  PubMed  Google Scholar 

  • Ogawa Y, Sun BK, Lee JT (2008) Intersection of the RNA interference and X-inactivation pathways. Science 320:1336–1341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohhata T, Hoki Y, Sasaki H, Sado T (2008) Crucial role of antisense transcription across the Xist promoter in Tsix-mediated Xist chromatin modification. Development 135:227–235

    Article  CAS  PubMed  Google Scholar 

  • Okamoto I, Otte AP, Allis CD, Reinberg D, Heard E (2004) Epigenetic dynamics of imprinted X inactivation during early mouse development. Science 303:633–634

    Article  CAS  Google Scholar 

  • Pauler FM, Koerner MV, Barlow DP (2007) Silencing by imprinted noncoding RNAs: is transcription the answer? Trends Genet 23:284–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peters J, Wroe SF, Wells CA, Miller HJ, Bodle D et al (1999) A cluster of oppositely imprinted transcripts at the Gnas locus in the distal imprinting region of mouse Chr 2. Proc Natl Acad Sci USA 96:3830–3835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Regha K, Latos PA, Spahn L (2006) The imprinted mouse Igf2r/Air cluster- a model maternal imprinting system. Cytogenet Genome Res 113:81–89

    Article  CAS  Google Scholar 

  • Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC et al (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403:901–906

    Article  CAS  PubMed  Google Scholar 

  • Royo H, Cavaillé J (2008) Non-coding RNAs in imprinted gene clusters. Biol Cell 100:149–166

    Article  CAS  PubMed  Google Scholar 

  • Royo H, Bortolin ML, Seitz H, Cavaillé J (2006) Small non-coding RNAs and genomic imprinting. Cytogenet Genome Res 113:99–108

    Article  CAS  PubMed  Google Scholar 

  • Runte M, Hüttenhofer A, Groß S, Kiefmann M, Horsthemke et al (2001) The IC-SNURF-SNRPN transcript serves as a host for multiple small nucleolar RNA species and as an antisense RNA for UBE3A. Hum Mol Genet 10:2687–2700

    Article  CAS  PubMed  Google Scholar 

  • Sado T, Wang Z, Sasaki H, Li E (2001) Regulation of imprinted X-Chr inactivation in mice by Tsix. Development 128:1275–1286

    Article  CAS  PubMed  Google Scholar 

  • Sado T, Hoki Y, Sasaki H (2005) Tsix silences Xist through modification of chromatin structure. Dev Cell 9:159–165

    Article  CAS  PubMed  Google Scholar 

  • Sado T, Hoki Y, Sasaki H (2006) Tsix defective in splicing is competent to establish Xist silencing. Development 133:4925–4931

    Article  CAS  PubMed  Google Scholar 

  • Sahoo T, del Gaudio D, German J, Shinawi M, Peters SU et al (2008) A Prader-Willi phenotype caused by paternal deficiency for the HBII-85 C/D box snoRNA cluster. Nat Genet 40:719–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saito Y, Liang G, Egger G, Friedman JM, Chuang JC et al (2006) Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell 9:435–443

    Article  CAS  PubMed  Google Scholar 

  • Schmidt JV, Levorse JM, Tilghman SM (1999) Enhancer competition between H19 and Igf2 does not mediate their imprinting. Proc Natl Acad Sci USA 96:9733–9738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seidl CIM, Stricker SH, Barlow DP (2006) The imprinted Air ncRNA is an atypical RNAPII transcript that evades splicing and escapes nuclear export. EMBO J 25:1–11

    Article  CAS  Google Scholar 

  • Seitz H, Royo H, Bortolin ML, Lin SP, Ferguson-Smith AC et al (2004a) A large imprinted microRNA gene cluster at the mouse Dlk1-Gtl2 domain. Genome Res 14:1741–1748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seitz H, Royo H, Lin SP, Youngson N, Ferguson-Smith AC et al (2004b) Imprinted small RNA genes. Biol Chem 385:905–911

    Article  CAS  PubMed  Google Scholar 

  • Seitz H, Youngson N, Lin SP, Dalbert S, Paulsen M et al (2003) Imprinted microRNA genes transcribed antisense to a reciprocally imprinted retrotransposon-like gene. Nat Genet 34:261–262

    Article  CAS  PubMed  Google Scholar 

  • Shibata S, Lee JT (2003) Characterisation and quantitation of differential Tsix transcripts: implications for Tsix function. Hum Mol Genet 12:125–136

    Article  CAS  PubMed  Google Scholar 

  • Shin J-Y, Fitzpatrick G, Higgins MJ (2008) Two distinct mechanisms of silencing by the KvDMR1 imprinting control region. EMBO J 27:168–178

    Article  CAS  PubMed  Google Scholar 

  • Skryabin B, Gubar LV, Seeger B, Pfeiffer J, Handel S et al (2007) Deletion of the MBII-52 snoRNA gene cluster in mice results in postnatal growth retardation. PLoS Genet 3:e235

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sleutels F, Zwart R, Barlow DP (2002) The noncoding Air RNA is required for silencing autosomal imprinted genes. Nature 415:810–813

    Article  CAS  PubMed  Google Scholar 

  • Sleutels F, Tjon G, Ludwig T, Barlow DP (2003) Imprinted silencing of Slc22a2 and Slc22a3 does not need transcriptional overlap between Igf2r and Air. EMBO J 22:3696–3704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smilinich NJ, Day CD, Caldwell Fitzpatrick GV, GM Lossie AC et al (1999) A maternally methylated CpG island in KvLQT1 is associated with an antisense paternal transcript and loss of imprinting in Beckwith-Wiedemann syndrome. Proc Natl Acad Sci USA 96:8064–8069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stavropoulos N, Lu N, Lee JT (2001) A functional role for Tsix transcription in blocking Xist. Proc Natl Acad Sci USA 98:10025–10027

    Article  Google Scholar 

  • Sun BK, Deaton AM, Lee JT (2006) A transient heterochromatic state in Xist preempts X inactivation choice without RNA stabilization. Mol Cell 21:617–628

    Article  CAS  PubMed  Google Scholar 

  • Thorvaldsen JL, Duran KL, Bartolomei MS (1998) Deletion of the H19 differentially methylated domain results in loss of imprinted expression of H19 and Igf2. Genes Dev 12:3693–3702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Umlauf D, Goto Y, Cao R, Cerqueira F, Wagschal A et al (2004) Imprinting along the Kcnqdomain on mouse Chr 7 involves repressive histone modifications and recruitment of Polycomb group complexes. Nat Genet 36:1296–1300

    Article  CAS  PubMed  Google Scholar 

  • Valencia-Sanchez MA, Liu J, Hannon GJ, Parker R (2006) Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev 20:515–524

    Article  CAS  PubMed  Google Scholar 

  • Verdel A, Moazed D (2005) RNAi-directed assembly of heterochromatin in fission yeast. FEBS Lett 579:5872–5878

    Article  CAS  PubMed  Google Scholar 

  • Wassenegger M (2005) The role of the RNAi machinery in heterochromatin formation. Cell 122:13–16

    Article  CAS  PubMed  Google Scholar 

  • Watanabe T, Totoki Y, Toyoda A, Kaneda M, Kuramochi-Miyagawa S et al (2008) Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature 453:539–544

    Article  CAS  PubMed  Google Scholar 

  • Williamson CM, Skinner JA, Kelsey G, Peters J (2002) Alternative non-coding splice variants of Nespas, an imprinted gene antisense to Nesp in the Gnas imprinting cluster. Mamm Genome 13:74–79

    Article  CAS  PubMed  Google Scholar 

  • Williamson CM, Ball ST, Nottingham WT, Skinner JA, Plagge A et al (2004) A cis-acting control region is required exclusively for the tissue-specific imprinting of Gnas. Nat Genet 36:894–899

    Article  CAS  PubMed  Google Scholar 

  • Williamson CM, Turner MD, Ball ST, Nottingham WD, Glenister P et al (2006) Identification of an imprinting control region affecting the expression of all the transcripts in the Gnas cluster. Nat Genet 38:350–355

    Article  CAS  PubMed  Google Scholar 

  • Wroe S, Kelsey G, Skinner JA, Bodle D, Ball ST et al (2000) An imprinted transcript, antisense to Nesp, adds complexity to the cluster of imprinted genes at the mouse Gnas locus. Proc Natl Acad Sci USA 97:3342–3346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wutz A, Theussi HC, Dausman J, Jaenisch R, Barlow DP et al (2001) Non-imprinted lgf2r expression decreases growth and rescues the Tme mutation in mice. Development 128:1881–1887

    Article  CAS  PubMed  Google Scholar 

  • Wutz A, Rasmussen TP, Jaenisch R (2002) Chromosomal silencing and localization are mediated by different domains of Xist RNA. Nat Genet 30:167–174

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

We thank Bruce Cattanach for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jo Peters.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peters, J., Robson, J.E. Imprinted noncoding RNAs. Mamm Genome 19, 493–502 (2008). https://doi.org/10.1007/s00335-008-9139-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-008-9139-4

Keywords

Navigation