Skip to main content
Log in

Discovery of a new HBB haplotype w2 in a wild-derived house mouse, Mus musculus

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

Genetic characterization of a wild-derived house mouse, Mus musculus, originally collected near Lake Balkhash in the Republic of Kazakhstan, was performed by examining protein polymorphisms and nucleotide sequences for the hemoglobin beta chain (HBB) subunits. Protein electrophoresis, which was performed on a cellulose-acetate plate, showed an independent mobility pattern representing a new, previously undiscovered haplotype. Neighbor-joining analyses of the HBB adult genes, i.e., HBB-T1 and HBB-T2, and the intergenic spacer region showed that the Lake Balkhash mouse possessed genomic components that were mixed from different haplotypes. Compared to the previously determined HBB haplotypes, d, p, and w1, the HBB-T1 gene and ca. 11 kb of the spacer region were most similar to the w1 haplotype; however, the remainder of the spacer region and the HBB-T2 gene were most similar to the d haplotype but may represent a still uncharacterized and divergent haplotype. The recombination event is predicted to have occurred 2.5 kb upstream of the HBB-T2 gene and may have occurred through intersubspecific hybridization between mice of the musculus subspecies group (with the w1 haplotype) and the castaneus subspecies group (with the d-like haplotype). Alternatively, an unknown subspecies group that is equidistantly divergent from each of these subspecies groups may have been involved. Our findings suggest reticulate evolution among the subspecies groups during the evolution of M. musculus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abe K, Noguchi H, Tagawa K, Yuzuriha M, Toyoda A et al (2004) Contribution of Asian subspecies Mus musculus molossinus to genomic constitution of strain C57BL/6J, as defined by BAC-end sequence―SNP analyses. Genome Res 14:2439–2447

    Article  PubMed  Google Scholar 

  • Aguileta G, Bielawski JP, Yang Z (2006) Proposed standard nomenclature of the a- and b-globin gene families. Genes Genet Syst 81:367–371

    Article  PubMed  CAS  Google Scholar 

  • Beck JA, Lloyd S, Hafezparast M, Lennon-Pierce M, Eppig JT et al (2000) Genealogies of mouse inbred strains. Nat Genet 24:23–25

    Article  PubMed  CAS  Google Scholar 

  • Bonhomme F, Miyashita N, Boursot P, Catalan J, Moriwaki K (1989) Genetical variation and polyphyletic origin in Japanese Mus musculus. Heredity 63:299–308

    PubMed  Google Scholar 

  • Boursot P, Bonhomme F, Catalan J, Moriwaki K (1989) Variation of a Y chromosome repeated sequence across subspecies of Mus musculus. Heredity 63:289–297

    PubMed  Google Scholar 

  • Frazer KA, Wade CM, Hinds DA, Patil N, Cox DR et al (2004) Segmental phylogenetic relationships of inbred mouse strains revealed by fine-scale analysis of sequence variation across 4.6 Mb of mouse genome. Genome Res 14:1493–1500

    Article  PubMed  CAS  Google Scholar 

  • Frazer KA, Eskin E, Kang HM, Bogue MA, Hinds DA et al (2007) A sequence-based variation map of 8.27 million SNPs in inbred mouse strains. Nature 448:1050–1053

    Article  PubMed  CAS  Google Scholar 

  • Guenet JL, Bonhomme F (2003) Wild mice: an ever-increasing contribution to a popular mammalian model. Trends Genet 19:24–31

    Article  PubMed  CAS  Google Scholar 

  • Hunt WG, Selander RK (1973) Biochemical genetics of hybridization in European house mice. Heredity 31:11–33

    PubMed  CAS  Google Scholar 

  • Ideraabdullah FY, de la Casa-Esperon E, Bell TA, Detwiler DA, Magnuson T et al (2004) Genetic and haplotype diversity among wild-derived mouse inbred strains. Genome Res 14:1880–1887

    Article  PubMed  CAS  Google Scholar 

  • Iyer V, Struhl K (1995) Poly (dA: dT), a ubiquitous promoter element that stimulates transcription via its intrinsic DNA structure. EMBO J 14:2570–2579

    PubMed  CAS  Google Scholar 

  • Kawashima T, Miyashita N, Wang C-H, He X-Q, Jin M-L et al (1991) A new haplotype of the globin gene complex, HBBw1, in Chinese wild mouse. Jpn J Genet 66:491–500

    Article  PubMed  CAS  Google Scholar 

  • Kawashima T, Miyashita N, Tsuchiya K, Li H, Wang F et al (1995) Geographical distribution of the HBB haplotypes in the Mus musculus subspecies in Eastern Asia. Jpn J Genet 70:17–23

    Article  PubMed  CAS  Google Scholar 

  • Kirkpatrick DT, Wang Y-H, Dominska M, Griffith JD, Petes TD (1999) Control of meiotic recombination and gene expression in yeast by a simple repetitive DNA sequence that excludes nucleosomes. Mol Cell Biol 19:7661–7671

    PubMed  CAS  Google Scholar 

  • Marshall JT Jr (1998) Identification and scientific names of Eurasian house mice and their European allies, subgenus Mus (Rodentia: Muridae). Privately printed at Springfield, VA, p. 80

  • Miyashita N, Moriwaki K, Minezawa M, Yonekawa H, Bonhomme F et al (1985) Allelic constitution of hemoglobin beta chain in wild population of the house mouse Mus musculus. Biochem Genet 23:975–986

    Article  PubMed  CAS  Google Scholar 

  • Miyashita N, Kawashima T, Wang C-H, Jin M-L, Wang F et al (1994) Genetic polymorphisms of Hbb haplotypes in wild mice. In: Moriwaki K, Shiroishi T, Yonekawa H (eds) Genetics in wild mice. Its application to biomedical research. Tokyo, Japan Science Society Press pp 85–93

    Google Scholar 

  • Moriwaki K (1994) Wild mouse from geneticist’s viewpoint. In: Moriwaki K, Shiroishi T, Yonekawa H (eds) Genetics in wild mice: Its application to biomedical research. Tokyo, Japan Science Society Press pp xiii-xxv

    Google Scholar 

  • Petes TD (2001) Meiotic recombination hot spot and cold spot. Nat Rev Genet 2:360–369

    Article  PubMed  CAS  Google Scholar 

  • Petras ML, Martin JE (1969) Improved electrophoretic resolution of some hemoglobin variants in Mus musculus. Biochem Genet 3:303–309

    Article  CAS  Google Scholar 

  • Sage RD, Heyneman D, Kim K-C, Wilson AC (1986) Wormy mice in a hybrid zone. Nature 324:60–63

    Article  PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Sato JJ, Tsuru Y, Hirai K, Yamaguchi Y, Mekada K et al (2006) Further evidence for recombination mouse hemoglobin beta b1 and b2 genes based on the nucleotide sequences of introns, UTR, and intergenic spacer regions. Genes Genet Syst 81:201–209

    Article  PubMed  CAS  Google Scholar 

  • Schultes NP, Szostak JW (1991) A poly(dA. dT) tract is a component of the recombination initiation site at the ARG4 lcus in Saccharomyces cereviseae. Mol Cell Biol 11:322–328

    PubMed  CAS  Google Scholar 

  • Shehee WR, Loeb DD, Adey NB, Burton FH, Casavant NC et al (1989) Nucleotide sequence of the BALB/c mouse globin complex. J Mol Biol 205:41–62

    Article  PubMed  CAS  Google Scholar 

  • Swofford DL (2002) PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods), version 4. Sunderland, MA, Sinauer Associates

    Google Scholar 

  • Ueda Y, Miyashita N, Imai K, Yamaguchi Y, Takamura K et al (1999) Nucleotide sequences of the mouse globin beta gene cDNAs in a wild derived new haplotype HBBw1. Mamm Genome 10:879–882

    Article  PubMed  CAS  Google Scholar 

  • Vanlenberghe F, Boursot P, Nielsen JT, Bonhomme F (1988) A steep cline for mitochondrial DNA in Danish mice. Genet Res 52:185–193

    Article  Google Scholar 

  • Wade CM, Kulbokas EJ III, Kirby AW, Zody MC, Mullikin JC et al (2002) The mosaic structure of variation in the laboratory mouse genome. Nature 420:574–577

    Article  PubMed  CAS  Google Scholar 

  • Wiltshire T, Pletcher MT, Batalov S, Barnes SW, Tarantino LM et al (2003) Genome-wide single-nucleotide polymorphism analysis defines haplotype patterns in mouse. Proc Natl Acad Sci U S A 100:3380–3385

    Article  PubMed  CAS  Google Scholar 

  • Wu T-C, Lichten M (1994) Meiosis-induced double-strand break sites determined by yeast chromatin structure. Science 263:515–518

    Article  PubMed  CAS  Google Scholar 

  • Yang H, Bell TA, Churchill GA, de Villena FPM (2007) On the subspecific origin of the laboratory mouse. Nat Genet 39:1100–1107

    Article  PubMed  CAS  Google Scholar 

  • Yonekawa H, Gotoh O, Tagashira Y, Matsushima Y, Shi L-I et al (1986) A hybrid origin of Japanese mice “Mus musculus molossinus.” Curr Top Microb Immunol 127:62–67

    CAS  Google Scholar 

  • Yonekawa H, Moriwaki K, Gotoh O, Miyashita N, Matsushima Y et al (1988) Hybrid origin of Japanese mice “Mus musculus molossinus”: evidence from restriction analysis of mitochondrial DNA. Mol Biol Evol 5:63–78

    PubMed  CAS  Google Scholar 

  • Yonekawa H, Takahama S, Gotoh O, Miyashita N, Moriwaki K (1994) Genetic diversity and geographic distribution of Mus musculus subspecies based on the polymorphism of mitochondrial DNA. In: Moriwaki K, Shiroishi T, Yonekawa H (eds) Genetics in wild mice: Its application to biomedical research. Tokyo, Japan Science Society Press pp 25–40

    Google Scholar 

Download references

Acknowledgments

The authors thank Kumi Futawaka, Mihoko Hatase, Kyoko Hirai, Hatuyuki Hirata, Kazuyuki Mekada, Yuuki Shichi, Miho Shimura, Yoshiharu Tsuru, Junpei Ueta, and Daisuke Watanabe for their technical support. The animals and experiments were partially supported by the Presidential Grant of the University of Miyazaki for encouragement of young scientists (for AS). This work was supported by RIKEN BRC (Director, Yuichi Obata) and in part by a grant-in-aid from the Ministry of Education, Science, Sports and Culture of Japan (for KM, HY, and YY).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasunori Yamaguchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sato, J.J., Shinohara, A., Miyashita, N. et al. Discovery of a new HBB haplotype w2 in a wild-derived house mouse, Mus musculus . Mamm Genome 19, 155–162 (2008). https://doi.org/10.1007/s00335-008-9094-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-008-9094-0

Keywords

Navigation