Skip to main content
Log in

Mapping of genetic modifiers of Nr2e3 rd7/rd7 that suppress retinal degeneration and restore blue cone cells to normal quantity

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

The retinal degeneration 7 (rd7) mouse, lacking expression of the Nr2e3 gene, exhibits retinal dysplasia and a slow, progressive degeneration due to an abnormal production of blue opsin-expressing cone cells. In this study we evaluated three strains of mice to identify alleles that would slow or ameliorate the retinal degeneration observed in Nr2e3 rd7/rd7 mice. Our studies reveal that genetic background greatly influences the expression of the Nr2e3 rd7/rd7 phenotype and that the inbred mouse strains CAST/EiJ, AKR/J, and NOD.NON-H2 nb1 carry alleles that confer resistance to Nr2e3 rd7/rd7-induced retinal degeneration. B6.Cg-Nr2e3 rd7/rd7 mice were outcrossed to each strain and the F1 progeny were intercrossed to produce F2 mice. In each intercross, 20–24% of the total F2 progeny were homozygous for the Nr2e3 rd7/rd7 mutation in a mixed genetic background; approximately 28–48% of the Nr2e3 rd7/rd7 homozygotes were suppressed for the degenerative retina phenotype in a mixed genetic background. The suppressed mice had no retinal spots and normal retinal morphology with a normal complement of blue opsin-expressing cone cells. An initial genome scan revealed a significant association of the suppressed phenotype with loci on chromosomes 8 and 19 with the CAST/EiJ background, two marginal loci on chromosomes 7 and 11 with the AKR/J background, and no significant QTL with the NOD.NON-H2 nb1 background. We did not observe any significant epistatic effects in this study. Our results suggest that there are several genes that are likely to act in the same or parallel pathway as NR2E3 that can rescue the Nr2e3 rd7/rd7 phenotype and may serve as potential therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akhmedov NB, Piriev NI, Chang B, Rappoport AL, Hawes NL et al (2000) A deletion in a photoreceptor-specific nuclear receptor mRNA causes retinal degeneration in rd7 mouse. Proc Natl Acad Sci USA 97:5551–5556

    Article  PubMed  CAS  Google Scholar 

  • Broman KW, Wu H, Sen S, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889–890

    Article  PubMed  CAS  Google Scholar 

  • Carter-Dawson LD, LaVail MM (1979) Rods and cones in the mouse retina. II. Autoradiographic analysis of cell generation using tritiated thymidine. J Comp Neurol 188:263–272

    Article  PubMed  CAS  Google Scholar 

  • Carmi R, Elbedour K, Stone EM, Sheffield VC (1995) Phenotypic differences among patients with Bardet-Biedl syndrome linked to three different chromosome loci. Am J Med Genet 59:199–203

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Rattner A, Nathans J (2005) The rod photoreceptor-specific nuclear receptor Nr2e3 suppresses transcription of multiple cone-specific genes. J Neurosci 25:118–129

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Wang QL, Xu S, Liu I, Li LY et al (2002) Functional analysis of cone-rod homeobox (CRX) mutations associated with retinal dystrophy. Hum Mol Genet 11:873–884

    Article  PubMed  CAS  Google Scholar 

  • Choi MY, Romer AI, Hu M, Lepourcelet M, Mechoor A et al (2006) A dynamic expression survey identifies transcription factors relevant in mouse digestive tract development. Development 20:4119–4129

    Article  CAS  Google Scholar 

  • Coppieters F, Leroy BP, Beysen D, Hellemans J, De Bosscher K et al (2007) Recurrent mutation in the first zinc finger of the orphan nuclear receptor NR2E3 causes autosomal dominant retinitis pigmentosa. Am J Hum Genet 81:147–157

    Article  PubMed  CAS  Google Scholar 

  • Corbo JC, Cepko CL (2005) A hybrid photoreceptor expressing both rod and cone genes in a mouse model of enhanced S-cone syndrome. PLoS Genet 5:140–153

    Google Scholar 

  • Danciger M, Lyon J, Worrill D, Hoffman S, Lem J et al (2004) New retinal light damage QTL in mice with the light-sensitive RPE65 LEU variant. Mamm Genome 4:277–283

    Article  Google Scholar 

  • de Pontual L, Pelet A, Clement-Ziza M, Trocet D, Antonarakis SE et al (2007) Epistatic interactions with a common hypomorphic RET allele in syndromic Hirschsprung disease. Hum Mutat 28:790–796

    Article  PubMed  CAS  Google Scholar 

  • Doerge RW, Churchill GA (1996) Permutation tests for multiple loci affecting a quantitative character. Genetics 142:285–294

    PubMed  CAS  Google Scholar 

  • Favre MA (1958) A propos de deux cas de degenerescence hyaloideoretinienne. Ophthalmologica 135:604–609

    Article  PubMed  CAS  Google Scholar 

  • Fishman GA, Peachey N (1989) Rod-cone dystrophy associated with a rod system electroretinogram obtained under photopic conditions. Ophthalmology 96:913–918

    PubMed  CAS  Google Scholar 

  • Fishman GA, Jampol LM, Goldberg MF (1976) Diagnostic features of the Favre-Goldmann syndrome. Br J Ophthalmol 60:345–353

    Article  PubMed  CAS  Google Scholar 

  • Freund CL, Gregory-Evans CY, Furukawa T, Papaioannou M, Looser J et al (1997) Cone-rod dystrophy due to mutations in a novel photoreceptor-specific homeobox gene (CRX) essential for maintenance of the photoreceptor. Cell 91:543–553

    Article  PubMed  CAS  Google Scholar 

  • Friedman T, Battey J, Kachar B, Riazuddin S, Noben-Trauth K, Griffith A, Wilcox E (2000) Modifier genes of hereditary hearing loss. Curr Opin Neurobiol 10:487–493

    Article  PubMed  CAS  Google Scholar 

  • Furukawa T, Morrow EM, Cepko CL (1997) Crx, a novel otx-like homeobox gene, shows photoreceptor-specific expression and regulates photoreceptor differentiation. Cell 91:531–541

    Article  PubMed  CAS  Google Scholar 

  • Genomics Institute of the Novartis Research Foundation (2007) SymAtlas v1.2.4. Available at http://www.symatlas.gnf.org/SymAtlas/

  • Haider NB, Jacobson SG, Cideciyan AV, Swideski R, Streb LM et al (2000) Mutation of a nuclear receptor gene, NR2E3, causes enhanced s cone syndrome, a disorder of retinal cell fate. Nat Genet 24:127–131

    Article  PubMed  CAS  Google Scholar 

  • Haider NB, Naggert JK, Nishina PM (2001) Excess cone cell proliferation due to lack of a functional NR2E3 causes retinal dysplasia and degeneration in rd7/rd7 mice. Hum Mol Genet 10:1619–1626

    Article  PubMed  CAS  Google Scholar 

  • Haider N, Ikeda A, Naggert JK, Nishina PM (2002) Genetic modifiers of vision and hearing. Hum Mol Genet 11:1195–1206

    Article  PubMed  CAS  Google Scholar 

  • Haider NB, DeMarco P, Huang X, Nystuen A, Smith RS et al (2006) The transcription factor, Nr2e3, functions in retinal progenitors to suppress cone cell generation. Vis Neurosci 23:917–929

    Article  PubMed  Google Scholar 

  • Hawes NL, Smith RS, Chang B, Davisson M, Heckenlively JR et al (1999) Mouse fundus photography and angiography: a catalogue of normal and mutant phenotypes. Mol Vis 5:22

    PubMed  CAS  Google Scholar 

  • Hokanson JE (1999) Functional variants in the lipoprotein lipase gene and risk cardiovascular disease. Curr Opin Lipidol 10:393–399

    Article  PubMed  CAS  Google Scholar 

  • Hong C, Khanna H, Oh EC, Hicks D, Mitton KP et al (2004) Photoreceptor-specific nuclear receptor NR2E3 functions as a transcriptional activator in rod photoreceptors. Hum Mol Genet 13:1563–1575

    Article  CAS  Google Scholar 

  • Ikeda A, Naggert JK, Nishina PM (2002) Genetic modification of retinal degeneration in tubby mice. Exp Eye Res 74:455–461

    Article  PubMed  CAS  Google Scholar 

  • Jacobson SG, Marmor MF, Kemp CM, Knighton RW (1990) SWS (blue) cone hypersensitivity in a newly identified retinal degeneration. Invest Ophthalmol Vis Sci 31:827–838

    PubMed  CAS  Google Scholar 

  • Jacobson SG, Roman AJ, Roman MI, Gass JDM, Parker JA (1991) Relatively enhanced S cone function in the Goldmann-Favre syndrome. Am J Ophthalmol 111:446–453

    PubMed  CAS  Google Scholar 

  • Jacobson SG, Cideciyan AV, Iannaccone A, Weleber RG, Fishman GA et al (2000) Disease expression of RP1 mutations causing autosomal dominant retinitis pigmentosa. Invest Ophthalmol Vis Sci 41:1898–1908

    PubMed  CAS  Google Scholar 

  • Jacobson SG, Sumaroka AL, Aleman TS, Cideciyan AV, Schwartz SB et al (2004) Nuclear receptor NR2E3 gene mutations distort human retinal laminar architecture and cause an unusual degeneration. Hum Mol Genet 13:1893–1902

    Article  PubMed  CAS  Google Scholar 

  • Kaplow ME, Mannava LJ, Pimentel AC, Fermin HA, Hyatt VJ et al (2007) A genetic modifier screen identifies multiple genes that interact with Drosophila Rap/Fzr and suggests novel cellular roles. Neurogenetics 21:105–151

    Article  CAS  Google Scholar 

  • Kitambi SS, Hauptmann G (2007) The zebrafish orphan nuclear receptor genes nr2e1 and nr2e3 are expressed in developing eye and forebrain. Gene Expr Patterns 4:521–528

    Article  CAS  Google Scholar 

  • Lam BL, Goldberg JL, Hartley KL, Stone EM, Liu M (2007) Atypical mild enhanced S-cone syndrome with novel compound heterozygosity of the NR2E3 gene. Am J Ophthalmol 144:157–159

    Article  PubMed  CAS  Google Scholar 

  • Lander E, Kruglyak L (1995) Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet 11:241–247

    Article  PubMed  CAS  Google Scholar 

  • Marmor MF, Jacobson SG, Foerster MH, Kellner U, Weleber RG (1990) Diagnostic clinical findings of a new syndrome with night blindness, maculopathy, and enhanced S cone sensitivity. Am J Ophthalmol 110:124–134

    PubMed  CAS  Google Scholar 

  • Mears AJ, Kondo M, Swain PK, Takada Y, Bush RA et al (2001) Nrl is required for rod photoreceptor development. Nat Genet 29:447–452

    Article  PubMed  CAS  Google Scholar 

  • Milam AH, Rose L, Cideciyan AV, Barakat MR, Tang WX et al (2002) The nuclear receptor NR2E3 plays a role in human retinal photoreceptor differentiation and degeneration. Proc Natl Acad Sci U S A 99:473–478

    Article  PubMed  CAS  Google Scholar 

  • Mucci LA, Wedren S, Tamimi RM, Trichopoulos D, Adami HO (2001) The role of gene-environment interaction in the etiology of human cancer: examples from cancers of the large bowel, lung, and breast. J Intern Med 249:477–493

    Article  PubMed  CAS  Google Scholar 

  • Ng L, Hurley JB, Dierks B, Srinivas M, Salto C et al (2001) A thyroid hormone receptor that is required for the development of green cone photoreceptors. Nat Genet 27:94–98

    PubMed  CAS  Google Scholar 

  • Nishida A, Furukawa A, Koike CL, Tano Y, Aizawa SI et al (2003) Otx2 homeobox gene controls retinal photoreceptor cell fate and pineal gland development. Nat Neurosci 6:1255–1263

    Article  PubMed  CAS  Google Scholar 

  • Peng GH, Ahmad O, Ahmad F, Liu J, Chen S (2005) The photoreceptor-specific nuclear receptor Nr2e3 interacts with Crx and exerts opposing effects on the transcription of rod versus cone genes. Hum Mol Genet 14:747–764

    Article  PubMed  CAS  Google Scholar 

  • Riise R, Andreasson S, Borgastrom MK,Wright AF, Tommerup N et al (1997) Intrafamilial variation of the phenotype in Bardet-Biedl syndrome. Br J Ophthalmol 81:373–385

    Article  Google Scholar 

  • Sen S, Churchill GA (2001) A stastical framework for quantitative trait mapping. Genetics 159:371–387

    PubMed  CAS  Google Scholar 

  • Vineis P (2001) Diet, genetic susceptibility and carcinogenesis. Public Health Nutr 4:485–491

    PubMed  CAS  Google Scholar 

  • Whalley LJ (2001) Early-onset Alzheimer’s disease in Scotland: environmental and familial factors. Br J Psychiatry 40(Suppl):s53–s59

    Article  CAS  Google Scholar 

  • Wong G, Conger SB, Burmeister M (2006) Mapping of genetic modifiers affecting the eye phenotype of ocular retardation (Chx100r-J) mice. Mamm Genome 6:518–525

    Article  Google Scholar 

  • Young RW (1985a) Cell proliferation during postnatal development of the retina in the mouse. Dev Brain Res 21:229–239

    Article  Google Scholar 

  • Young RW (1985b) Cell differentiation in the retina of the mouse. Anat Rec 212:199–205

    Article  PubMed  CAS  Google Scholar 

  • Zielenski J (2000) Genotype and phenotype in cystic fibrosis. Respiration 67:117–133

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Gray J, Wu L, Leone G, Rowan S et al (2004) Rb regulates proliferation and rod photoreceptor in the mouse retina. Nat Genet 36:351–360

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the National Eye Institute [EY11996 (PMN), NRSA postdoctoral training grant (F32 EY07080–01A (NBH)], the Center for Biomedical Excellence Award through the National Center for Research Resources, National Institutes of Health [NIH 5 P20 RRO18788–02 (NBH)], and the Nebraska Tobacco Settlement Biomedical Research Development, TJL Cancer Core Grant (CA-34196).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neena B. Haider.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 39 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haider, N.B., Zhang, W., Hurd, R. et al. Mapping of genetic modifiers of Nr2e3 rd7/rd7 that suppress retinal degeneration and restore blue cone cells to normal quantity. Mamm Genome 19, 145–154 (2008). https://doi.org/10.1007/s00335-008-9092-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-008-9092-2

Keywords

Navigation