Skip to main content
Log in

A new 4016-marker radiation hybrid map for porcine-human genome analysis

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

We constructed a 5000-rad comprehensive radiation hybrid (RH) map of the porcine (Sus scrofa) genome and compared the results with the human genome. Of 4475 typed markers, 4016 (89.7%) had LOD >5 compared with the markers used in our previous RH map by means of two-point analysis and were grouped onto the 19 porcine chromosomes (SSCs). All mapped markers had LOD >3 as determined by RHMAPPER analysis. The current map comprised 430 microsatellite (MS) framework markers, 914 other MS markers, and 2672 expressed sequence tags (ESTs). The whole-genome map was 8822.1 cR in length, giving an average marker density of 0.342 Mb/cR. The average retention frequency was 35.8%. Using BLAST searches of porcine ESTs against the RefSeq human nucleotide and amino acid sequences (release 22), we constructed high-resolution comparative maps of each SSC and each human chromosome (HSA). The average distance between ESTs in the human genome was 1.38 Mb. SSC contained 50 human chromosomal syntenic groups, and SSC11, SSC12, and SSC16 were only derived from the HSA13q, HSA17, and HSA5 regions, respectively. Among 38 porcine terminal regions, we found that at least 20 regions have been conserved between the porcine and human genomes; we also found four paralogous regions for the major histocompatibility complex (MHC) on SSC7, SSC2, SSC4, and SSC1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Website references

References

  • Aldenhoven J, Chen Y, Backofen B, Moran C (2003) Improving the comparative map of porcine chromosome 10 with respect to human chromosomes 1, 9 and 10. Cytogenet Genome Res 102:121–127

    Article  PubMed  CAS  Google Scholar 

  • Andersson L, Haley CS, Ellegren H, Knott SA, Johansson M, et al. (1994) Genetic mapping of quantitative trait loci for growth and fatness in pigs. Science 263:1771–1774

    Article  PubMed  CAS  Google Scholar 

  • Bosak N, Faraut T, Mikawa S, Uenishi H, Kiuchi S, et al. (2003) Construction of a high-resolution comparative gene map between swine chromosome region 6q11–>q21 and human chromosome 19 q-arm by RH mapping of 51 genes. Cytogenet Genome Res 102:109–115

    Article  PubMed  CAS  Google Scholar 

  • Bosak N, Yamomoto R, Fujisaki S, Faraut T, Kiuchi S, et al. (2005) A dense comparative gene map between human chromosome 19q13.3–>q13.4 and a homologous segment of swine chromosome 6. Cytogenet Genome Res 108:317–321

    Article  PubMed  CAS  Google Scholar 

  • Bourque G, Pevzner PA, Tesler G (2004) Reconstructing the genomic architecture of ancestral mammals: lessons from human, mouse, and rat genomes. Genome Res 14:507–516

    Article  PubMed  CAS  Google Scholar 

  • Burke J, Davison D, Hide W (1999) d2_cluster: a validated method for clustering EST and full-length cDNA sequences. Genome Res 9:1135–1142

    Article  PubMed  CAS  Google Scholar 

  • Fronicke L, Chowdhary BP, Scherthan H, Gustavsson I (1996) A comparative map of the porcine and human genomes demonstrates ZOO-FISH and gene mapping-based chromosomal homologies. Mamm Genome 7:285–290

    Article  PubMed  CAS  Google Scholar 

  • Fujishima-Kanaya N, Toki D, Suzuki K, Sawazaki T, Hiraiwa H, et al. (2003) Development of 50 gene-associated microsatellite markers using BAC clones and the construction of a linkage map of swine chromosome 4. Anim Genet 34:135–141

    Article  PubMed  CAS  Google Scholar 

  • Fujishima-Kanaya N, Ito Y, Suzuki K, Sawazaki T, Hiraiwa H, et al. (2004) The porcine homologues of six genes located on human chromosome 8 (RAB2, CA3, PTDSS1, MATN2, FZD6 and SQLE) assigned to porcine chromosome 4 by fluorescence in situ hybridization. Anim Genet 35:501–502

    Article  PubMed  CAS  Google Scholar 

  • Genini S, Nguyen TT, Malek M, Talbot R, Gebert S, et al. (2006) Radiation hybrid mapping of 18 positional and physiological candidate genes for arthrogryposis multiplex congenita on porcine chromosome 5. Anim Genet 37:239–244

    Article  PubMed  CAS  Google Scholar 

  • Goureau A, Yerle M, Schmitz A, Riquet J, Milan D, et al. (1996) Human and porcine correspondence of chromosome blocks using bidirectional chromosome painting. Genomics 36:252–262

    Article  PubMed  CAS  Google Scholar 

  • Hamasima N, Suzuki H, Mikawa A, Morozumi T, Plastow G, et al. (2003) Construction of a new porcine whole-genome framework map using a radiation hybrid panel. Anim Genet 34:216–220

    Article  PubMed  CAS  Google Scholar 

  • Jiang Z, He H, Hamasima N, Suzuki H, Verrinder G (2002) Comparative mapping of Homo sapiens chromosome 4 (HSA4) and Sus scrofa chromosome 8 (SSC8) using orthologous genes representing different cytogenetic bands as landmarks. Genome 45:147–156

    Article  PubMed  CAS  Google Scholar 

  • Jurka J (2001) Repbase update: a database and an electronic journal of repetitive elements. Trends Genet 16:418–420

    Article  Google Scholar 

  • Kasahara M (1997) New insights into the genomic organization and origin of the major histocompatibility complex: role of chromosomal (genome) duplication in the emergence of the adaptive immune system. Hereditas 127:59–65

    Article  PubMed  CAS  Google Scholar 

  • Liu WS, Eyer K, Yasue H, Roelofs B, Hiraiwa H, et al. (2005) A 12,000-rad porcine radiation hybrid (IMNpRH2) panel refines the conserved synteny between SSC12 and HSA17. Genomics 86:731–738

    Article  PubMed  CAS  Google Scholar 

  • Liu XG, Tamada Y, Shimogiri T, Nishibori M, Hiraiwa H, et al. (2007) Assignment of 56 genes from HSA13q to the porcine IMpRH map. Anim Genet 38:184–186

    Article  PubMed  CAS  Google Scholar 

  • McCoard SA, Fahrenkrug SC, Alexander LJ, Freking BA, Rohrer GA, et al. (2002) An integrated comparative map of the porcine X chromosome. Anim Genet 33:178–185

    Article  PubMed  CAS  Google Scholar 

  • Meyers SN, Rogatcheva MB, Larkin DM, Yerle M, Milan D, et al. (2005) Piggy-BACing the human genome II. A high-resolution, physically anchored, comparative map of the porcine autosomes. Genomics 86:739–752

    Article  PubMed  Google Scholar 

  • Middleton R, Aldenhoven J, Chen Y, Backofen B, Moran C (2003) Improving the comparative map of porcine chromosome 9 with respect to human chromosomes 1, 7 and 11. Cytogenet Genome Res 102:128–132

    Article  PubMed  CAS  Google Scholar 

  • Mikawa S, Akita T, Hisamatsu N, Inage Y, Ito Y, et al. (1999) A linkage map of 243 DNA markers in intercross of Gottingen miniature and Meishan pigs. Anim Genet 30:407–417

    Article  PubMed  CAS  Google Scholar 

  • Mikawa A, Suzuki H, Suzuki K, Toki D, Uenishi H, et al. (2004a) Characterization of 298 ESTs from porcine back-fat tissue and their assignment to the SSRH radiation hybrid map. Mamm Genome 15:315–322

    Article  PubMed  CAS  Google Scholar 

  • Mikawa S, Shimanuki S, Morozumi T, Domukai M, Shinkai H, et al. (2004b) Comparative analysis and development of microsatellite markers on swine (Sus scrofa) chromosome 1qter. Anim Genet 35:445–450

    Article  PubMed  CAS  Google Scholar 

  • Moller M, Berg F, Riquet J, Pomp D, Archibald A, et al. (2004) High-resolution comparative mapping of pig Chromosome 4, emphasizing the FAT1 region. Mamm Genome 15:717–731

    Article  PubMed  CAS  Google Scholar 

  • Murphy WJ, Larkin DM, Everts-van der Wind A, Bourque G, Tesler G, et al. (2005) Dynamics of mammalian chromosome evolution inferred from multispecies comparative maps. Science 309:613–617

    Article  PubMed  CAS  Google Scholar 

  • Nadeau JH, Taylor BA (1984) Lengths of chromosomal segments conserved since divergence of man and mouse. Proc Natl Acad Sci USA 81:814–818

    Article  PubMed  CAS  Google Scholar 

  • Olivier M, Aggarwal A, Allen J, Almendras AA, Bajorek ES, et al. (2001) A high-resolution radiation hybrid map of the human genome draft sequence. Science 291:1298–1302

    Article  PubMed  CAS  Google Scholar 

  • Pruitt KD, Tatusova T, Maglott DR (2005) NCBI Reference Sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res 33:D501–504

    Article  PubMed  CAS  Google Scholar 

  • Rink A, Eyer K, Roelofs B, Priest KJ, Sharkey-Brockmeier KJ, et al. (2006) Radiation hybrid map of the porcine genome comprising 2035 EST loci. Mamm Genome 17:878–885

    Article  PubMed  CAS  Google Scholar 

  • Rohrer GA, Alexander LJ, Hu Z, Smith TP, Keele JW, et al. (1996) A comprehensive map of the porcine genome. Genome Res 6:371–391

    Article  PubMed  CAS  Google Scholar 

  • Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386

    PubMed  CAS  Google Scholar 

  • Sato S, Atsuji K, Saito N, Okitsu M, Sato S, et al. (2006) Identification of quantitative trait loci affecting corpora lutea and number of teats in a Meishan × Duroc F2 resource population. J Anim Sci 84:2895–2901

    Article  PubMed  CAS  Google Scholar 

  • Sawera M, Cirera S, Jørgensen CB, Gorodkin J, Fredholm M (2006) Linkage mapping of gene-associated SNPs to pig chromosome 11. Anim Genet 37:199–204

    Article  PubMed  CAS  Google Scholar 

  • Schmitz A, Chaput B, Fouchet P, Guilly MN, Frelat G, et al. (1992) Swine chromosomal DNA quantification by bivariate flow karyotyping and karyotype interpretation. Cytometry 13:703–710

    Article  PubMed  CAS  Google Scholar 

  • Shimogiri T, Kiuchi S, Hiraiwa H, Hayashi T, Takano Y, et al. (2006) Assignment of 117 genes from HSA5 to the porcine IMpRH map and generation of a dense human-pig comparative map. Anim Genet 37:503–508

    Article  PubMed  CAS  Google Scholar 

  • Slonim D, Kruglyak L, Stein L, Lander E (1997) Building human genome maps with radiation hybrids. Comput Biol 4:487–504

    Article  CAS  Google Scholar 

  • Smit AFA (1996) Origin of interspersed repeats in the human genome. Curr Opin Genet Dev 6:743–749

    Article  PubMed  CAS  Google Scholar 

  • Soderlund C, Lau T, Deloukas P (1998) Z extensions to the RHMAPPER package. Bioinformatics 14:538–539

    Article  PubMed  CAS  Google Scholar 

  • Tanaka M, Matsumoto T, Yanai S, Domukai M, Toki D, et al. (2003) Conservation of the syntenies between porcine chromosome 7 and human chromosomes 6, 14 and 15 demonstrated by radiation hybrid mapping and linkage analysis. Anim Genet 34:255–263

    Article  PubMed  CAS  Google Scholar 

  • Uenishi H, Eguchi-Ogawa T, Shinkai H, Okumura N, Suzuki K, et al. (2007) PEDE (Pig EST Data Explorer) has been expanded into Pig Expression Data Explorer, including 10 147 porcine full-length cDNA sequences. Nucleic Acids Res 35:D650–653

    Article  PubMed  Google Scholar 

  • Van Etten WJ, Steen RG, Nguyen H, Castle AB, Slonim DK, et al. (1999) Radiation hybrid map of the mouse genome. Nat Genet 22:384–387

    Article  PubMed  CAS  Google Scholar 

  • Yerle M, Pinton P, Robic A, Alfonso A, Palvadeau Y, et al. (1998) Construction of a whole-genome radiation hybrid panel for high-resolution gene mapping in pigs. Cytogenet Cell Genet 82:82–188

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Ms. Y. Mizuide and E. Odajima (STAFF-Institute) for their technical assistance. An Animal Genome Project grant from the Ministry of Agriculture, Forestry, and Fisheries of Japan funded this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noriyuki Hamasima.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(Pdf 4,647 kb)

(XLS 254 kb)

(XLS 139 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamasima, N., Mikawa, A., Suzuki, H. et al. A new 4016-marker radiation hybrid map for porcine-human genome analysis. Mamm Genome 19, 51–60 (2008). https://doi.org/10.1007/s00335-007-9081-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-007-9081-x

Keywords

Navigation