Skip to main content

Advertisement

Log in

Diabetic modifier QTLs in F2 intercrosses carrying homozygous transgene of TGF-β

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

When the homozygous active form of porcine TGF-β1 transgene (Tgf/Tgf) (under control of the rat glucagon promoter) is introduced into the nonobese diabetic mouse (NOD) genetic background, the mice develop endocrine and exocrine pancreatic hypoplasia, low serum insulin concentrations, and impaired glucose tolerance. To identify genetic modifiers of the diabetic phenotypes, we crossed hemizygous NOD-Tgf with DBA/2J mice (D2) or C3H/HeJ mice (C3H) and used the “transgenic mice” for quantitative trait loci (QTL) analysis. Genome-wide scans of F2-D Tgf/Tgf (D2 × NOD) and F2-C Tgf/Tgf (C3H × NOD), homozygous for the TGF-β1 transgene, identified six statistically significant modifier QTLs: one QTL (Tdn1) in F2-D Tgf/Tgf, and five QTLs (Tcn1 to Tcn5) in F2-C Tgf/Tgf. Tdn1 (Chr 13, LOD = 4.39), and Tcn3 (Chr 2, LOD = 4.94) showed linkage to body weight at 8 weeks of age. Tcn2 (Chr 7, LOD = 4.38) and Tcn4 (Chr 14, LOD = 3.99 and 3.78) showed linkage to blood glucose (BG) concentrations in ipGTT at 30, 0, and 120 min, respectively. Tcn1 (Chr 1, LOD = 4.41) and Tcn5 (Chr 18, LOD = 4.99) showed linkage to serum insulin concentrations in ipGTT at 30 min. Tcn2 includes the candidate gene, uncoupling protein 2 (Ucp2), and shows linkage to Ucp2 mRNA levels in the soleus muscle (LOD = 4.90). Identification of six QTLs for diabetes-related traits in F2-D Tgf/Tgf and F2-C Tgf/Tgf raises the possibility of identifying candidate susceptibility genes and new targets for drug development for human type 2 diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BW:

Body weight

BG:

Blood glucose

C3H:

C3H/HeJ mice

D2:

DBA/2J mice

eQTL:

Expression quantitative trait loci

NOD-Tgf :

Hemizygous transgenic NOD mice with TGF-β1

F1-Tgf :

Hemizygous transgenic F1 mice with TGF-β1

NOD-Tgf/Tgf :

Homozygous transgenic NOD mice with TGF-β1

F2-D Tgf/Tgf :

Homozygous transgenic F2 intercross progeny with TGF-β1 between the D2 mice and NOD

F2-C Tgf/Tgf :

Homozygous transgenic F2 intercross progeny with TGF-β1 between the C3H/HeJ mice and NOD

F2-Tgf/Tgf :

Homozygous transgenic F2 intercross progeny with TGF-β1

Idd:

Insulin-dependent diabetes

ipGTT:

Intraperitoneal glucose tolerance test

NOD:

Nonobese diabetic mice

QTL:

Quantitative trait loci

T1D:

Type 1 diabetes

T2D:

Type 2 diabetes

References

  • Ahmadiyeh N, Churchill GA, Shimomura K, Solberg LC, Takahashi JS, et al. (2003) X-linked and lineage-dependent inheritance of coping responses to stress. Mamm Genome 14:748–757

    Article  PubMed  Google Scholar 

  • Broman KW, Wu H, Sen S, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889–890

    Article  PubMed  CAS  Google Scholar 

  • Chaparro RJ, Konigshofer Y, Beilhack GF, Shizuru JA, McDevitt HO, et al. (2006) Nonobese diabetic mice express aspects of both type 1 and type 2 diabetes. Proc Natl Acad Sci U S A 103:12475–12480

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Reifsnyder PC, Scheuplein F, Schott WH, Mileikovsky M, et al. (2005) “Agouti NOD”: identification of a CBA-derived Idd locus on Chromosome 7 and its use for chimera production with NOD embryonic stem cells. Mamm Genome 16:775–783

    Article  PubMed  CAS  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    PubMed  CAS  Google Scholar 

  • Dalgaard LT, Pedersen O (2001) Uncoupling proteins: functional characteristics and role in the pathogenesis of obesity and Type II diabetes. Diabetologia 44:946–965

    Article  PubMed  CAS  Google Scholar 

  • Deng S, Vatamaniuk M, Huang X, Doliba N, Lian MM, et al. (2004) Structural and functional abnormalities in the islets isolated from type 2 diabetic subjects. Diabetes 53:624–632

    Article  PubMed  CAS  Google Scholar 

  • Deruytter N, Boulard O, Garchon HJ (2004) Mapping non-class II H2-linked loci for type 1 diabetes in nonobese diabetic mice. Diabetes 53:3323–3327

    Article  PubMed  CAS  Google Scholar 

  • Hall RJ, Hollis-Moffatt JE, Merriman ME, Green RA, Baker D, et al. (2003) An autoimmune diabetes locus (Idd21) on mouse chromosome 18. Mamm Genome 14:335–339

    Article  PubMed  CAS  Google Scholar 

  • Hirayama I, Yi Z, Izumi S, Arai I, Suzuki W, et al. (1999) Genetic analysis of obese diabetes in the TSOD mouse. Diabetes 48:1183–1191

    Article  PubMed  CAS  Google Scholar 

  • Ihaka R, Gentleman R (1996) R: A language for data analysis and graphics. J Comput Graph Stat 5:299–314

    Article  Google Scholar 

  • Kido Y, Philippe N, Schaffer AA, Accili D (2000) Genetic modifiers of the insulin resistance phenotype in mice. Diabetes 49:589–596

    Article  PubMed  CAS  Google Scholar 

  • Komatsu S, Kiyosawa H, Yoshiki A, Okazaki Y, Yoshino M, et al. (2002) Identification of seven loci for static glucokinesis and dynamic glucokinesis in mice. Mamm Genome 13:293–298

    Article  PubMed  CAS  Google Scholar 

  • Leiter EH, Reifsnyder PC, Flurkey K, Partke HJ, Junger E, et al. (1998) NIDDM genes in mice: deleterious synergism by both parental genomes contributes to diabetogenic thresholds. Diabetes 47:1287–1295

    Article  PubMed  CAS  Google Scholar 

  • Mathews CE, Graser RT, Bagley RJ, Caldwell JW, Li R, et al. (2003) Genetic analysis of resistance to Type-1 Diabetes in ALR/Lt mice, a NOD-related strain with defenses against autoimmune-mediated diabetogenic stress. Immunogenetics 55:491–496

    Article  PubMed  CAS  Google Scholar 

  • Moritani M, Yoshimoto K, Wong SF, Tanaka C, Yamaoka T, et al. (1998) Abrogation of autoimmune diabetes in nonobese diabetic mice and protection against effector lymphocytes by transgenic paracrine TGF-beta1. J Clin Invest 102:499–506

    PubMed  CAS  Google Scholar 

  • Moritani M, Yamasaki S, Kagami M, Suzuki T, Yamaoka T, et al. (2005) Hypoplasia of endocrine and exocrine pancreas in homozygous transgenic TGF-beta1. Mol Cell Endocrinol 229:175–184

    Article  PubMed  CAS  Google Scholar 

  • Reifsnyder PC, Li R, Silveira PA, Churchill G, Serreze DV, et al. (2005) Conditioning the genome identifies additional diabetes resistance loci in Type I diabetes resistant NOR/Lt mice. Genes Immun 6:528–538

    Article  PubMed  CAS  Google Scholar 

  • Roderick TH, Guidi JN (1989) Strain distribution of polymorphic variants. In: Lyon MF, Searle AG (eds.) Genetic Variants and Strains of the Laboratory Mouse, 2nd ed. (Oxford, UK: Oxford University Press)

    Google Scholar 

  • Rogner UC, Boitard C, Morin J, Melanitou E, Avner P (2001) Three loci on mouse chromosome 6 influence onset and final incidence of type I diabetes in NOD.C3H congenic strains. Genomics 74:163–171

    Article  PubMed  CAS  Google Scholar 

  • Sakuraba H, Mizukami H, Yagihashi N, Wada R, Hanyu C, et al. (2002) Reduced beta-cell mass and expression of oxidative stress-related DNA damage in the islet of Japanese Type II diabetic patients. Diabetologia 45:85–96

    Article  PubMed  CAS  Google Scholar 

  • Scott LJ, Mohlke KL, Bonnycastle LL, Willer CJ, Li Y, et al. (2007) A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 316:1341–1345

    Article  PubMed  CAS  Google Scholar 

  • Sen S, Churchill GA (2001) A statistical framework for quantitative trait mapping. Genetics 159:371–387

    PubMed  CAS  Google Scholar 

  • Serreze DV, Leiter EH (2001) Genes and cellular requirements for autoimmune diabetes susceptibility in nonobese diabetic mice. Curr Dir Autoimmun 4:31–67

    Article  PubMed  CAS  Google Scholar 

  • Solberg LC, Baum AE, Ahmadiyeh N, Shimomura K, Li R, et al. (2004) Sex- and lineage-specific inheritance of depression-like behavior in the rat. Mamm Genome 15:648–662

    Article  PubMed  Google Scholar 

  • Takeshita S, Moritani M, Kunika K, Inoue H, Itakura M (2006) Diabetic modifier QTLs identified in F2 intercrosses between Akita and A/J mice. Mamm Genome 17:927–940

    Article  PubMed  CAS  Google Scholar 

  • Togawa K, Moritani M, Yaguchi H, Itakura M (2006) Multidimensional genome scans identify the combinations of genetic loci linked to diabetes-related phenotypes in mice. Hum Mol Genet 15:113–128

    Article  PubMed  CAS  Google Scholar 

  • Ueda H, Ikegami H, Kawaguchi Y, Fujisawa T, Yamato E, et al. (1999) Genetic analysis of late-onset type 2 diabetes in a mouse model of human complex trait. Diabetes 48:1168–1174

    Article  PubMed  CAS  Google Scholar 

  • Yoon KH, Ko SH, Cho JH, Lee JM, Ahn YB, et al. (2003) Selective beta-cell loss and alpha-cell expansion in patients with type 2 diabetes mellitus in Korea. J Clin Endocrinol Metab 88:2300–2308

    Article  PubMed  CAS  Google Scholar 

  • Zeggini E, Weedon MN, Lindgren CM, Frayling TM, Elliott KS, et al. (2007) Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science 316:1336–1341

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors sincerely thank Sato A for technical assistance. This study was supported by a grant from the Cooperative Link of Unique Science and Technology for Economy Revitalization (CLUSTER).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsuo Itakura.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 92 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suzuki, T., Moritani, M., Yoshino, M. et al. Diabetic modifier QTLs in F2 intercrosses carrying homozygous transgene of TGF-β . Mamm Genome 19, 15–25 (2008). https://doi.org/10.1007/s00335-007-9080-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-007-9080-y

Keywords

Navigation