Abstract
The preimplantation embryo development (Ped) gene regulates the rate of preimplantation embryonic cleavage division and subsequent embryo survival. In the mouse, the Ped gene product is Qa-2 protein, a nonclassical MHC class I molecule encoded by four tandem genes, Q6/Q7/Q8/Q9. Most inbred strains of mice have all four genes on each allelic chromosome, making a total of eight Qa-2 encoding genes, but there are a few strains that are missing all eight genes, defining a null allele. Mouse strains with the presence of the Qa-2 encoding genes express Qa-2 protein and produce embryos with a faster rate of preimplantation embryonic development and a greater chance of embryo survival compared to mouse strains with the null allele. There is extensive evidence that the human homolog of Qa-2 is HLA-G. HLA-G in humans, like Qa-2 in mice, is associated with enhanced reproductive success. The human population is an outbred population. Therefore, for a better comparison to the human population, we undertook an investigation of the presence of the genes encoding Qa-2 in an outbred population of mice. We used Real-Time Quantitative PCR to quantify the number of Qa-2 encoding genes in a population of 32 wild mice identified as Mus musculus domesticus both by morphologic assessment and by PCR analysis of their DNA. We found great variability in the number of Qa-2 encoding genes in the wild mice tested. The wild mouse with the highest number of Qa-2 encoding genes had 85 such genes, whereas we discovered one wild mouse without any Qa-2 encoding genes. Evolutionary implications of a range of Qa-2 encoding gene numbers in the wild mouse population are discussed, as well as the relevance of our findings to humans.
Similar content being viewed by others
References
Cadavid LF, Mejia BE, Watkins DI (1999) MHC class I genes in a New World primate, the cotton-top tamarin (Saguinus oedipus), have evolved by an active process of loci turnover. Immunogenetics 49:196–205
Clements CS, Kjer-Nielsen L, Kostenko L, Hoare HL, Dunstone MA, et al. (2005) Crystal structure of HLA-G: a nonclassical MHC class I molecule expressed at the fetal-maternal interface. Proc Natl Acad Sci U S A 102:3360–3365
Comiskey M, Goldstein CY, De Fazio SR, Mammolenti M, Newmark JA, et al. (2003) Evidence that HLA-G is the functional homolog of the mouse Qa-2, the Ped gene product. Hum Immunol 64:999–1004
Comiskey M, Domino KE, Warner CM (2007) HLA-G is found in lipid rafts and can act as a signaling molecule. Hum Immunol 68:1–11
Delarbre C, Jaulin C, Kourilsky P, Gachelin G (1992) Evolution of the major histocompatibility complex: a hundred-fold amplification of MHC class I genes in African pigmy mouse Nannomys setulosus. Immunogenetics 37:29–38
Fuzzi B, Rizzo R, Criscuoli L, Noci I, Melchiorri L, et al. (2002) HLA-G expression in early embryos is a fundamental prerequisite for the obtainment of pregnancy. Eur J Immunol 32:311–315
Gardner NB, Kozak CA, O’Brien SJ (1991) The Lake Casitas mild mouse: evolving genetic resistance to retroviral disease. Trends Genet 7:22–27
Goldbard SB, Warner CM (1982) Genes affect the timing of early mouse embryo development. Biol Reprod 27:419–424
Goldbard SB, Verbanac KM, Warner CM (1982a) Genetic analysis of H-2 linked gene(s) affecting early mouse embryo development. J Immunogenet 9:77–82
Goldbard SB, Verbanac KM, Warner CM (1982b) Role of the H-2 complex in preimplantation mouse embryo development. Biol Reprod 26:591–596
Jacob CO, Mykytyn K, Tashman N (1993) DNA polymorphism in cytokine genes based on length variation in simple-sequence tandem repeats. Immunogenetics 38:251–257
Jurisicova A, Casper RF, MacLusky NJ, Mills GB, Librach CL (1996) HLA-G expression during preimplantation human embryo development. Proc Natl Acad Sci U S A 93:161–165
Kumánovics A, Toyoyuki T, Lindahl KF (2003) Genomic organization of the mammalian MHC. Annu Rev Immunol 21:629–657
Mouse Genome Sequencing Consortium (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562
Nadeau JH (2002) Tackling complexity. Nature 420:517–518
Newmark JA, Sacher F, Jones GS, Warner CM (2002) Ped gene deletion polymorphism frequency in wild mice. J Exp Zool 293:179–185
Noci I, Fuzzi B, Rizzo R, Melchiorri L, Criscuoli L, et al. (2004) Embryonic soluble HLA-G as a marker of developmental potential in embryos. Hum Reprod 20:138–146
Ober C, Aldrich C, Rosinsky B, Robertson A, Walker MA, et al. (1998) HLA-G1 protein expression is not essential for fetal survival. Placenta 19:127–132
Purnell ET, Warner CM, Kort HI, Mitchell-Leef D, Elsner CW, et al. (2006) Influence of the preimplantation embryo development (Ped) gene on embryonic platelet-activating factor (PAF) levels. J Assist Reprod Genet 23:269–273
Sher G, Keskintepe L, Nouriani M, Roussev R, Batzofin J (2004) Expression of sHLA-G in supernatants of individually cultured 46-h embryos: a potentially valuable indicator of “embryo competency” and IVF outcome. Reprod Biomed Online 9:74–78
Sher G, Keskintepe L, Fisch JD, Acacio BA, Ahlering P, et al. (2005) Soluble human leukocyte antigen G expression in phase I culture media at 46 hours after fertilization predicts pregnancy and implantation from day 3 embryo transfer. Fertil Steril 83:1410–1413
Tian Z, Xu Y, Warner CM (1992) Removal of Qa-2 antigen alters the Ped gene phenotype of preimplantation mouse embryos. Biol Reprod 47:271–276
van der Ven K, Skrablim S, Engels G, Krebs D (1998) HLA-G polymorphisms and allele frequencies in Caucasians. Hum Immunol 59:302–312
van der Ven K, Pfeiffer K, Skrablin S (2000) HLA-G polymorphisms and molecule function—questions and more questions—a review. Placenta 21 (Suppl A):S86–S92
Verbanac KM, Warner CM (1981) Role of the major histocompatibility complex in the timing of early mammalian development. In: Glasser SR, Bullock DW (eds.) Cellular and molecular aspects of implantation. (New York: Plenum Press), pp 467–470
Warner CM (2007) Immunological aspects of embryo development. In: Cohen J, Elder K (eds.) Human embryo evaluation and selection. Parthenon Publishing Group, London, pp 155–168
Warner CM, Brenner CA (2001) Genetic regulation of preimplantation embryo survival. Curr Top Dev Biol 52:151–192
Warner CM, Gollnick SO, Goldbard SB (1987a) Linkage of the preimplantation-embryo-development (Ped) gene to the mouse major histocompatibility complex (MHC). Biol Reprod 36:606–610
Warner CM, Gollnick SO, Flaherty L, Goldbard SB (1987b) Analysis of Qa-2 antigen expression by preimplantation mouse embryos: possible relationship to the preimplantation-embryo-development (Ped) gene product. Biol Reprod 36:610–616
Warner CM, Brownell MS, Rothschild MF (1991) Analysis of litter size and weight in mice differing in Ped gene phenotype and the Q region of the H-2 complex. J Reprod Immunol 19:303–313
Warner CM, Panda P, Almquist CD, Xu Y (1993) Preferential survival of mice expressing the Qa-2 antigen. J Reprod Fertil 99:145–147
Warner CM, Comiskey M, Clisham PR, Brenner CA (2004) Soluble HLA-G (sHLA-G) a predictor of IVF outcome? J Assist Reprod Genet 21:315–316
Watkins A, Watkins A, Osmond C, Warner CM, Comiskey M, et al. (2006) The influence of mouse Ped gene expression on postnatal development. J Physiol 571:211–220
Wu L, Exley GE, Warner CM (1998) Differential expression of Ped gene candidates in preimplantation mouse embryos. Biol Reprod 59:941–952
Xu Y, Warner CM (1992) Effect of antisense oligonucleotides to major histocompatibility comlpex (MHC) mRNA on preimplantation embryo development. Assist Reprod Tech Androl 3:219–223
Xu Y, Jin P, Warner CM (1993) Modulation of preimplantation embryonic development by antisense oligonucleotides to major histocompatibility complex genes. Biol Reprod 48:1042–1046
Xu Y, Jin P, Mellor AL, Warner CM (1994) Identification of the Ped gene at the molecular level: the Q9 MHC class I transgene converts the Ped slow to the Ped fast phenotype. Biol Reprod 51:695–699
Yeager M, Hughes AL (1999) Evolution of the mammalian MHC: natural selection, recombination, and convergent evolution. Immunol Rev 167:45–48
Yie SM, Balakier H, Motamedi G, Librach CL (2005) Secretion of human leukocyte antigen-G by human embryos is associated with a higher in vitro fertilization pregnancy rate. Fertil Steril 83:30–36
Acknowledgments
The authors thank Jessica Gonynor and Ivy Chanin for locating the frozen wild mouse samples. This work was supported by NIH grant HD39505.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Byrne, M.J., Jones, G.S. & Warner, C.M. Preimplantation embryo development (Ped) gene copy number varies from 0 to 85 in a population of wild mice identified as Mus musculus domesticus . Mamm Genome 18, 767–778 (2007). https://doi.org/10.1007/s00335-007-9067-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00335-007-9067-8