Skip to main content
Log in

Genome-wide search for microsatellite markers associated with radiologic alterations in the navicular bone of Hanoverian warmblood horses

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

The aim of this study was to identify quantitative trait loci (QTLs) for pathologic changes in the navicular bone in Hanoverian warmblood horses. Seventeen paternal half-sib groups comprising 192 individuals were analyzed in a whole-genome scan. These families included 144 progeny and grandchildren, which were randomly chosen from the Hanoverian warmblood. Three different traits were considered: deformed canales sesamoidales and radiographic changes in the contour and in the structure of the navicular bone. The genome scan included in total 214 highly polymorphic microsatellite markers. The putatively linked genomic regions on equine chromosomes (ECA) 2, 3, 10, and 15 were refined using 53 additional microsatellites. Chromosome-wide significant QTLs were located on five different equine chromosomes (ECA2, 3, 4, 10, and 26). Genome-wide significant QTLs were on ECA2 at 48 cM and on ECA10 from 45.5 to 49.8 cM. This study was a first step to get more insight into the molecular genetic determination of radiologic changes in the equine navicular bone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abecasis GR, Cherny SS, Cookson WO, Cardon LR (2002) Merlin – rapid analysis of dense genetic maps using sparse gene flow trees. Nat Genet 30:97–101

    Article  PubMed  CAS  Google Scholar 

  • Ackermann N, Johnson JH, Dorn CR (1977) Navicular disease in the horse: risk factors, radiographic changes, and response to therapy. J Am Vet Med Assoc 170:183–187

    Google Scholar 

  • Adams AE, Rosenblatt M, Suva LJ (1999) Identification of a novel parathyroid hormone-responsive gene in human osteoblastic cells. Bone 24:305–313

    Article  PubMed  CAS  Google Scholar 

  • Binnerts ME, Wen X, Cante-Barrett K, Bright J, Chen H-T, et al. (2004) Human crossveinless-2 is a novel inhibitor of bone morphogenetic proteins. Biochem Biophys Res Commun 315:272–280

    Article  PubMed  CAS  Google Scholar 

  • Bos H, van der Meij GJW, Dik KJ (1986) Heredity of navicular disease. Vet Quart 8:68–72

    CAS  Google Scholar 

  • Brinkmeyer-Langford C, Raudsepp T, Lee E-J, Goh G, Schäffer AA, et al. (2005) A high-resolution physical map of equine homologs of HSA19 shows divergent evolution compared with other mammals. Mamm Genome 16:631–649

    Article  PubMed  CAS  Google Scholar 

  • Brunken E (1986) Röntgenologische Verlaufsuntersuchungen am Strahlbein des Pferdes. Thesis, University of Veterinary Medicine Hannover

  • Campbell JR, MacGregor C (1984) Podotrochlose Ergebnisse der Behandlung. In: Orthopädie bei Huf- und Klauentieren, Knezevic PF, Hrsg. (Hannover: Schlütersche), pp 52–58

  • Chowdhary BP, Raudsepp T, Kata SR, Goh G, Millon LV, et al. (2003) The first-generation whole-genome radiation hybrid map in the horse identifies conserved segments in human and mouse genomes. Genome Res 13:742–751

    Article  PubMed  CAS  Google Scholar 

  • Demissie S, Cupples LA, Myers R, Aliabadi P, Levy D, et al. (2002) Genome scan for quantity of hand osteoarthritis – the Framingham study. Arthritis Rheum 46:946–952

    Article  PubMed  CAS  Google Scholar 

  • Dik KJ, van den Broek J (1995) Role of navicular bone shape in the pathogenesis of navicular disease: a radiological study. Equine Vet J 27:390–393

    PubMed  CAS  Google Scholar 

  • Fedde K, Whyte MP (1990) Alkaline phosphatase (tissue-nonspecific isoenzyme) is a phosphoethanolamine and pyridoxal-5-prime-phosphate ectophosphatase: normal and hypophosphatasis fibroblast study. Am J Hum Genet 47:767–775

    PubMed  CAS  Google Scholar 

  • Hamacher S, Matern S, Roeb E (2004) Extracellular matrix – from basic research to clinical significance. An overview with special consideration of matrix metalloproteinases. Dtsch Med Wochenschr 129:1976–1980

    Article  PubMed  CAS  Google Scholar 

  • Hertsch B, Wissdorf H, Zeller R (1982) Die sogenannten „Gefäßlöcher” des Strahlbeins und ihre Beziehung zum Hufgelenk - ein Beitrag zur Pathogenese der Hufrollenerkrankung. Tierärztl Praxis 10:365–379

    CAS  Google Scholar 

  • Jun A S, Liu S, Koo EH, Do DV, Stark WJ, et al. (2001) Microarray analysis of gene expression in human donor corneas. Arch Ophthalmol 199:1629–1634

    Google Scholar 

  • Kaser-Hotz B, Ueltschi G (1992) Radiographic appearance of the navicular bone in sound horses. Vet Radiol Ultrasound 33:9–17

    Article  Google Scholar 

  • Kassner A, Tiedemann K, Notbohm H, Ludwig T, Morgelin M, et al. (2004) Molecular structure and interaction of recombinant human type XVI collagen. J Mol Biol 339:835–853

    Article  PubMed  CAS  Google Scholar 

  • Kong A, Cox NJ (1997) Allele-sharing models: LOD scores and accurate linkage tests. Am J Hum Genet 61:1179–1188

    Article  PubMed  CAS  Google Scholar 

  • Kruglyak L, Daly MJ, Reeve-Daly MP, Lander ES (1996) Parametric and nonparametric linkage analysis: a unified multipoint approach. Am J Hum Genet 58:1347–1363

    PubMed  CAS  Google Scholar 

  • KWPN (Koninklijke Vereniging Warmbloed Paardenstamboek Nederland) (1994) The frequency and heredity of navicular disease, sesamoidosis, fetlock joint arthrosis, bone spavin and osteochondrosis of the hock. A radiographic progeny study. KWPN (Koninklijke Vereniging Warmbloed Paardenstamboek Nederland), Zeist

  • Leppävouri J, Kujala U, Kinnunen J, Kaprio J, Nissilä M, et al. (1999) Genome scan for predisposing loci for distal interphalangeal joint osteoarthritis: Evidence for a locus on 2q. Am J Hum Genet 65:1060–1067

    Article  Google Scholar 

  • Lowe JE (1974) Sex, breed and age incidence of navicular disease. Proc 20th Ann Conv AAEP, 37–46

  • MacGregor CM (1986) Radiographic assessment of navicular bones, based on changes in the distal nutrient foramina. Equine Vet J 18:203–206

    Article  PubMed  CAS  Google Scholar 

  • Meulenbelt I, Bijerk C, de Wildt SC, Miedema HS, Valkenburg HA, et al. (1997) Investigation of the association of the CRTM and CRTL1 genes with radiographically evident osteoarthritis in subjects from the Rotterdam study. Arthritis Rheum 40:1760–1765

    Article  PubMed  CAS  Google Scholar 

  • Mornet E, Taillandier A, Peyramaure S, Kaper F, Müller F, et al. (1998) Identification of fifteen novel mutations in the tissue-nonspecific alkaline phosphatase (TNSALP) gene in European patients with severe hypophosphatasia. Eur J Hum Genet 6:308–314

    Article  PubMed  CAS  Google Scholar 

  • Myers JC, Dickson LA, Pope FM, Korhonen VR, Nicholls A, et al. (1985) A homozygous frameshift mutation in the pro-alpha-1(I) collagen COOH-propeptide reults in osteogenesis imperfecta. Ann N Y Acad Sci 460:482–485

    Article  Google Scholar 

  • Nicholls AC, Oliver J, Renouf DV, Heath DA, Pope FM (1992) The molecular defect in a family with mild atypical osteogenesis imperfecta and extreme joint hypermobility: exon skipping caused by an 11-bp deletion from an intron in one COL1A2 allele. Hum Genet 88:627–633

    Article  PubMed  CAS  Google Scholar 

  • Numans SR, van der Watering CC (1973) Navicular disease: podotrochlitis chronica aseptica podotrochlosis. Equine Vet J 5:1–7

    PubMed  CAS  Google Scholar 

  • O’Brien TR, Millman TM, Poll RR, Suter PF (1975) Navicular disease in the Thoroughbred horse: a morphologic investigation relative to a new radiographic projection. J Am Vet Radiol Soc 16:39–51

    Article  Google Scholar 

  • Okazaki M, Takeshita S, Kawai S, Kikuno R, Tsujimura A, et al. (1994) Molecular cloning and characterization of OB-cadherin, a new member of cadherin family expressed in osteoblasts. J Biol Chem 269:12092–12098

    PubMed  CAS  Google Scholar 

  • Oxspring GE (1935) The radiology of navicular disease, with observations on its pathology. Vet Rec 15:1433–1447

    Google Scholar 

  • Pan T-C, Zhang R-Z, Mattei M-G, Timpl R, Chu M-L (1992) Cloning and chromosomal location of human alpha-1(XVI) collagen. Proc Natl Acad Sci U S A 89:6565–6569

    Article  PubMed  CAS  Google Scholar 

  • Penedo MCT, Millon LV, Bernoco D, Bailey E, Binns M, et al. (2005) International equine gene mapping workshop report: a comprehensive linkage map constructed with data from few markers and by merging four mapping resources. Cytogenet Genome Res 111:5–15

    Article  PubMed  CAS  Google Scholar 

  • Philipsson J, Brendow E, Dalin G, Wallin L (1998) Genetic aspects of diseases and lesions in horses. Proc 6th WCGALP, Armidale, Australia, 11–16 January 1998, Vol 24, pp 408–415

  • Phillips CL, Shrago AW, Pinnell SR, Wenstrup RJ (1990) DNA sequence analysis of alpha-2(I) collagen from an individual with the Marfan phenotype. Ann N Y Acad Sci 580:560–561

    Article  Google Scholar 

  • Rose RJ, Taylor BJ, Steel JD (1978) Navicular disease in the horse: an analysis of seventy cases and assessment of a special radiographic view. J Equine Med Surg 2:492–497

    Google Scholar 

  • Stock KF, Distl O (2005) Prediction of breeding values for osseus fragments in fetlock and hock joints, deforming arthropathy in hock joints and pathologic changes in the navicular bones of Hanoverian Warmblood horses. Livest Prod Sci 92:77–94

    Article  Google Scholar 

  • Stock KF, Distl O (2006) Genetic analyses of radiographic appearance of the navicular bones in the Warmblood horse. Am J Vet Res 67:1013–1019

    Article  PubMed  Google Scholar 

  • Stock KF, Hamann H, Distl O (2004) Variance component estimation on the frequency of pathologic changes in the navicular bones of Hanoverian Warmblood horses. J Anim Breed Genet 121:289–301

    Article  Google Scholar 

  • Svalastoga E (1983) Navicular disease in the horse. A microangiographic investigation. Nord Vet Med 35:28–30

    PubMed  CAS  Google Scholar 

  • Svalastoga E, Smith M (1983) Navicular disease in the horse. The subchondral bone pressure. Nord Vet Med 35:31–37

    PubMed  CAS  Google Scholar 

  • Svalastoga E, Reimann I, Nielsen K (1983) Changes of the fibrocartilage in navicular disease in horses. A histological and histochemical investigation of navicular bones. Nord Vet Med 35:372–378

    CAS  Google Scholar 

  • Swinburne J, Gerstenberg C, Breen M, Aldrige V, Lockhart L, et al. (2000) First comprehensive low-density horse linkage map based on two 3-generation, full-sibling, cross-bred horse reference families. Genomics 66:123–134

    Article  PubMed  CAS  Google Scholar 

  • Swinburne JE, Boursnell M, Hill G, Pettitt L, Allen T, et al. (2006) Single linkage group per chromosome genetic linkage map for the horse, based on two three-generation, full-sibling, crossbred horse reference families. Genomics 87:1–29

    Article  PubMed  CAS  Google Scholar 

  • Tanihara H, Sano K, Heimark RL, St. John T, Suzuki S (1994) Cloning of five human cadherins clarifies characteristic features of cadherin extracellular domain and provides further evidence for two structurally different types of cadherin. Cell Adhes Commun 2:15–26

    PubMed  CAS  Google Scholar 

  • Van den Belt AJ, Dik KJ, van den Broek J (2003) The use of radiography as a tool for the efficacy of selective breeding of a poor radiographic navicular bone condition (grade 3 and 4). Proceedings of the 13th International Veterinary Radiology Society, Midrand, South Africa

  • Viitanen M, Bird J, Smith R, Tulamo R-M, May SA (2003) Biochemical characterisation of navicular hyaline cartilage, navicular fibrocartilage and the deep digital flexor tendon in horses with navicular disease. Res Vet Sci 75:113–120

    Article  PubMed  CAS  Google Scholar 

  • Wallin L, Strandberg E, Philipsson J, Dalin G (2000) Estimates of longevity and causes of culling and death in Swedish warmblood and coldblood horses. Livest Prod Sci 63:275–289

    Article  Google Scholar 

  • Watson RB, Wallis GA, Holmes DF, Viljoen D, Byers PH, et al. (1992) Ehlers–Danlos syndrome type VIIB: incomplete clearage of abnormal typeI procollagen by N-proteinase in vitro results in the formation of copolymers of collagen and partially clearved pNcollagen that are near circular in cross-section. J Biol Chem 267:9093–9100

    PubMed  CAS  Google Scholar 

  • Whittemore AS, Halpern J (1994) A class of tests for linkage using affected pedigree members. Biometrics 50:118–127

    Article  PubMed  CAS  Google Scholar 

  • Wigginton JE, Abecasis GR (2005) PEDSTATS: descriptive statistics, graphics, and quality assessment for gene mapping data. Bioinformatics 21:3445–3447

    Article  PubMed  CAS  Google Scholar 

  • Willms F, Röhe R, Kalm E (1999) Genetische Analyse von Merkmalskomplexen in der Reitpferdezucht unter Berücksichtigung von Gliedmaßenveränderungen. 1. Mitteilung: Züchterische Bedeutung von Gliedmaßenveränderungen Züchtungskunde 71:330–345

    Google Scholar 

  • Wright IM (1993) A study of 118 cases of navicular disease: radiological features. Equine Vet J 25:493–500

    PubMed  CAS  Google Scholar 

  • Yoshida C, Furuichi T, Fujita T, Fukuyama R, Kanatani N, et al. (2002) Core-binding factor beta interacts with runx2 and is required for skeletal development. Nat Genet 32:541–546

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ottmar Distl.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM1 (PDF 29497 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diesterbeck, U.S., Hertsch, B. & Distl, O. Genome-wide search for microsatellite markers associated with radiologic alterations in the navicular bone of Hanoverian warmblood horses. Mamm Genome 18, 373–381 (2007). https://doi.org/10.1007/s00335-007-9021-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-007-9021-9

Keywords

Navigation