Skip to main content
Log in

Identification of bovine QTL for growth and carcass traits in Japanese Black cattle by replication and identical-by-descent mapping

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

To map quantitative trait loci (QTL) for growth and carcass traits in a purebred Japanese Black cattle population, we conducted multiple QTL analyses using 15 paternal half-sib families comprising 7860 offspring. We identified 40 QTL with significant linkages at false discovery rates of less than 0.1, which included 12 for intramuscular fat deposition called marbling and 12 for cold carcass weight or body weight. The QTL each explained 2%–13% of the phenotypic variance. These QTL included many replications and shared hypothetical identical-by-descent (IBD) alleles. The QTL for CW on BTA14 was replicated in five families with significant linkages and in two families with a 1% chromosome-wise significance level. The seven sires shared a 1.1-Mb superior Q haplotype as a hypothetical IBD allele that corresponds to the critical region previously refined by linkage disequilibrium mapping. The QTL for marbling on BTA4 was replicated in two families with significant linkages. The QTL for marbling on BTA6, 7, 9, 10, 20, and 21 and the QTL for body weight on BTA6 were replicated with 1% and/or 5% chromosome-wise significance levels. There were shared IBD Q or q haplotypes in the marbling QTL on BTA4, 6, and 10. The allele substitution effect of these haplotypes ranged from 0.7 to 1.2, and an additive effect between the marbling QTL on BTA6 and 10 was observed in the family examined. The abundant and replicated QTL information will enhance the opportunities for positional cloning of causative genes for the quantitative traits and efficient breeding using marker-assisted selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arranz JJ, Coppieters W, Berzi P, Cambisano N, Grisart B, et al. (1998) A QTL affecting milk yield and composition maps to bovine chromosome 20: a confirmation. Anim Genet 29, 107–115

    Article  CAS  PubMed  Google Scholar 

  • Bishop MD, Kappes SM, Keele JW, Stone RT, Sunden SL, et al. (1994) A genetic linkage map for cattle. Genetics 136, 619–639

    CAS  PubMed  Google Scholar 

  • Blott S, Kim JJ, Moisio S, Schmidt-Kuntzel A, Cornet A, et al. (2003) Molecular dissection of a quantitative trait locus: a phenylalanine-to-tyrosine substitution in the transmembrane domain of the bovine growth hormone receptor is associated with a major effect on milk yield and composition. Genetics 163, 253–266

    CAS  PubMed  Google Scholar 

  • Boldman KG, Kriese LA, Van Vleck LD, Van Tassel CP, Kachman, SD (1995) A Manual for Use of MTDFREML. A Set of Programs to obtain Estimates of Variances and Covariances (Washington, DC: US Department of Agriculture, Agricultural Research Service)

  • Casas E, Shackelford SD, Keele JW, Stone RT, Kappes SM, et al. (2000) Quantitative trait loci affecting growth and carcass composition of cattle segregating alternate forms of myostatin. J Anim Sci 78, 560–569

    CAS  PubMed  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138, 963–971

    CAS  PubMed  Google Scholar 

  • Cohen-Zinder M, Seroussi E, Larkin DM, Loor JJ, Everts-van der Wind A, et al. (2005) Identification of a missense mutation in the bovine ABCG2 gene with a major effect on the QTL on chromosome 6 affecting milk yield and composition in Holstein cattle. Genome Res 15, 936–944

    Article  CAS  PubMed  Google Scholar 

  • Coppieters W, Riquet J, Arranz JJ, Berzi P, Cambisano N, et al. (1998) A QTL with major effect on milk yield and composition maps to bovine chromosome 14. Mamm Genome 9, 540–544

    Article  CAS  PubMed  Google Scholar 

  • de Koning DJ, (2006) Conflicting candidates for cattle QTLs. Trends Genet 22, 301–305

    Article  PubMed  CAS  Google Scholar 

  • Farnir F, Grisart B, Coppieters W, Riquet J, Berzi P, et al. (2002) Simultaneous mining of linkage and linkage disequilibrium to fine map quantitative trait loci in outbred half-sib pedigrees: revisiting the location of a quantitative trait locus with major effect on milk production on bovine chromosome 14. Genetics 161, 275–287

    CAS  PubMed  Google Scholar 

  • Georges M, Nielsen D, Mackinnon M, Mishra A, Okimoto R, et al. (1995) Mapping quantitative trait loci controlling milk production in dairy cattle by exploiting progeny testing. Genetics 139, 907–920

    CAS  PubMed  Google Scholar 

  • Glazier AM, Nadeau JH, Aitman TJ (2002) Finding genes that underlie complex traits. Science 298, 2345–2349

    Article  CAS  PubMed  Google Scholar 

  • Grisart B, Coppieters W, Farnir F, Karim L, Ford C, et al. (2002) Positional candidate cloning of a QTL in dairy cattle: identification of a missense mutation in the bovine DGAT1 gene with major effect on milk yield and composition. Genome Res 12, 222–231

    Article  CAS  PubMed  Google Scholar 

  • Haley CS, Knott SA, Elsen JM (1994) Mapping quantitative trait loci in crosses between outbred lines using least squares. Genetics 136, 1195–1207

    CAS  PubMed  Google Scholar 

  • Heyen DW, Weller JI, Ron M, Band M, Beever JE, et al. (1999) A genome scan for QTL influencing milk production and health traits in dairy cattle. Physiol Genomics 1, 165–175

    CAS  PubMed  Google Scholar 

  • Ihara N, Takasuga A, Mizoshita K, Takeda H, Sugimoto M, et al. (2004) A comprehensive genetic map of the cattle genome based on 3802 microsatellites. Genome Res 14, 1987–1998

    Article  CAS  PubMed  Google Scholar 

  • Itoh T, Watanabe T, Ihara N, Mariani P, Beattie CW, et al. (2005) A comprehensive radiation hybrid map of the bovine genome comprising 5593 loci. Genomics 85, 413–424

    Article  CAS  PubMed  Google Scholar 

  • Kawaguchi N, Xu X, Tajima R, Kronqvist P, Sundberg C, et al. (2002) ADAM 12 protease induces adipogenesis in transgenic mice. Am J Pathol 160, 1895–1903

    CAS  PubMed  Google Scholar 

  • Keele JW, Shackleford SD, Kappes SM, Koohmaraie M, Stone RT (1999) A region on bovine chromosome 15 influences beef longissimus tenderness in steers. J Anim Sci 77, 1364–1371

    CAS  PubMed  Google Scholar 

  • Knott SA, Marklund L, Haley CS, Andersson K, Davies W, et al. (1998) Multiple marker mapping of quantitative trait loci in a cross between outbred wild boar and large white pigs. Genetics 149, 1069–1080

    CAS  PubMed  Google Scholar 

  • Kruglyak L, (1996) Thresholds and sample sizes. Nat Genet 14, 132–133

    Article  CAS  PubMed  Google Scholar 

  • Lander ES, Botstein D (1989) Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121, 185–199

    CAS  PubMed  Google Scholar 

  • Lander E, Kruglyak L (1995) Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet 11, 241–247

    Article  CAS  PubMed  Google Scholar 

  • Li C, Basarab J, Snelling WM, Benkel B, Murdoch B, et al. (2002) The identification of common haplotypes on bovine chromosome 5 within commercial lines of Bos taurus and their associations with growth traits. J Anim Sci 80, 1187–1194

    CAS  PubMed  Google Scholar 

  • Mizoguchi Y, Watanabe T, Fujinaka K, Iwamoto E, Sugimoto Y (2006) Mapping of quantitative trait loci for carcass traits in a Japanese Black (Wagyu) cattle population. Anim Genet 37, 51–54

    Article  CAS  PubMed  Google Scholar 

  • Mizoshita K, Watanabe T, Hayashi H, Kubota C, Yamakuchi H, et al. (2004) Quantitative trait loci analysis for growth and carcass traits in a half-sib family of purebred Japanese Black (Wagyu) cattle. J Anim Sci 82, 3415–3420

    CAS  PubMed  Google Scholar 

  • Mizoshita K, Takano A, Watanabe T, Takasuga A, Sugimoto Y (2005) Identification of a 1.1-Mb region for a carcass weight QTL on bovine Chromosome 14. Mamm Genome 16, 532–537

    Article  PubMed  Google Scholar 

  • Moody DE, Pomp D, Buchanan DS (1997) Feasibility of the grandprogeny design for quantitative trait loci (QTL) detection in purebred beef cattle. J Anim Sci 75 941–949

    CAS  PubMed  Google Scholar 

  • Sasaki Y, Nagai K, Nagata Y, Doronbekov K, Nishimura S, et al. (2006) Exploration of genes showing intramuscular fat deposition-associated expression changes in musculus longissimus muscle. Anim Genet 37 40–46

    Article  CAS  PubMed  Google Scholar 

  • Schnabel RD, Kim JJ, Ashwell MS, Sonstegard TS, Van Tassell CP, et al. (2005) Fine-mapping milk production quantitative trait loci on BTA6: analysis of the bovine osteopontin gene. Proc Natl Acad Sci U S A 102, 6896–6901

    Article  CAS  PubMed  Google Scholar 

  • Seaton G, Haley CS, Knott SA, Kearsey M, Visscher PM (2002) QTL Express: mapping quantitative trait loci in simple and complex pedigrees. Bioinformatics 18, 339–340

    Article  CAS  PubMed  Google Scholar 

  • Soukas A, Socci ND, Saatkamp BD, Novelli S, Friedman JM (2001) Distinct transcriptional profiles of adipogenesis in vivo and in vitro. J Biol Chem 276, 34167–34174

    Article  CAS  PubMed  Google Scholar 

  • Spelman RJ, Coppieters W, Karim L, van Arendonk JA, Bovenhuis H (1996) Quantitative trait loci analysis for five milk production traits on chromosome six in the Dutch Holstein-Friesian population. Genetics 144, 1799–1808

    CAS  PubMed  Google Scholar 

  • Stone RT, Keele JW, Shackelford SD, Kappes SM, Koohmaraie M (1999) A primary screen of the bovine genome for quantitative trait loci affecting carcass and growth traits. J Anim Sci 77, 1379–1384

    CAS  PubMed  Google Scholar 

  • Tseng YH, Butte AJ, Kokkotou E, Yechoor VK, Taniguchi CM, et al. (2005) Prediction of preadipocyte differentiation by gene expression reveals role of insulin receptor substrates and necdin. Nat Cell Biol 7, 601–611

    Article  CAS  PubMed  Google Scholar 

  • Visscher PM, Thompson R, Haley CS (1996) Confidence intervals in QTL mapping by bootstrapping. Genetics 143, 1013–1020

    CAS  PubMed  Google Scholar 

  • Weller JI, Kashi Y, Soller M (1990) Power of daughter and granddaughter designs for determining linkage between marker loci and quantitative trait loci in dairy cattle. J Dairy Sci 73, 2525–2537

    Article  CAS  PubMed  Google Scholar 

  • Weller JI, Song JZ, Heyen DW, Lewin HA, Ron M (1998) A new approach to the problem of multiple comparisons in the genetic dissection of complex traits. Genetics 150, 1699–1706

    CAS  PubMed  Google Scholar 

  • Winter A, Kramer W, Werner FA, Kollers S, Kata S, et al. (2002) Association of a lysine-232/alanine polymorphism in a bovine gene encoding acyl-CoA:diacylglycerol acyltransferase (DGAT1) with variation at a quantitative trait locus for milk fat content. Proc Natl Acad Sci U S A 99, 9300–9305

    Article  CAS  PubMed  Google Scholar 

  • Yamada T, Taniguchi Y, Nishimura S, Yoshioka S, Takasuga A, et al. (2006) Radiation hybrid mapping of genes showing intramuscular fat deposition-associated expression changes in bovine musculus longissimus muscle. Anim Genet 37, 184–185

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the technical staff at the Shirakawa Institute of Animal Genetics and the collaborating institutes for technical assistance. The work was partly supported by the Ministry of Agriculture, Forestry, and Fishery, Japan, and by the Japan Racing and Livestock Promotion Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshikazu Sugimoto.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takasuga, A., Watanabe, T., Mizoguchi, Y. et al. Identification of bovine QTL for growth and carcass traits in Japanese Black cattle by replication and identical-by-descent mapping. Mamm Genome 18, 125–136 (2007). https://doi.org/10.1007/s00335-006-0096-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-006-0096-5

Keywords

Navigation