Skip to main content

Advertisement

Log in

A locus on mouse Chromosome 9 (Adip5) affects the relative weight of the gonadal but not retroperitoneal adipose depot

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

To identify the gene or genes on mouse Chromosome 9 that contribute to strain differences in fatness, we conducted an expanded mapping analysis to better define the region where suggestive linkage was found, using the F2 generation of an intercross between the C57BL/6ByJ and 129P3/J mouse strains. Six traits were studied: the summed weight of two adipose depots, the weight of each depot, analyzed individually (the gonadal and retroperitoneal depot), and the weight of each depot (summed and individual) relative to body size. We found significant linkage (LOD = 4.6) that accounted for the relative weight of the summed adipose depots, and another for the relative weight of the gonadal (LOD = 5.3) but not retroperitoneal (LOD = 0.9) adipose depot. This linkage is near marker rs30280752 (61.1 Mb, Build 34) and probably is equivalent to the quantitative trait locus (QTL) Adip5. Because the causal gene is unknown, we identified and evaluated several candidates within the confidence interval with functional significance to the body fatness phenotype (Il18, Acat1, Cyp19a1, Crabp1, Man2c1, Neil1, Mpi1, Csk, Lsm16, Adpgk, Bbs4, Hexa, Thsd4, Dpp8, Anxa2, and Lipc). We conclude that the Adip5 locus is specific to the gonadal adipose depot and that a gene or genes near the linkage peak may account for this QTL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  • Arbet-Engels C, Tartare-Deckert S, Eckhart W (1999) C-terminal Src kinase associates with ligand-stimulated insulin-like growth factor-I receptor. J Biol Chem 274, 5422–5428

    Article  PubMed  CAS  Google Scholar 

  • Bachmanov AA, Reed DR, Tordoff MG, Price RA, Beauchamp GK (2001) Nutrient preference and diet-induced adiposity in C57BL/6ByJ and 129P3/J mice. Physiol Behav 72, 603–613

    Article  PubMed  CAS  Google Scholar 

  • Bachmanov AA, Reed DR, Li X, Li S, Beauchamp GK, et al. (2002) Voluntary ethanol consumption by mice: genome-wide analysis of quantitative trait loci and their interactions in a C57BL/6ByJ x 129P3/J F2 intercross. Genome Res 12, 1257–1268

    Article  PubMed  CAS  Google Scholar 

  • Baghaei F, Rosmond R, Westberg L, Hellstrand M, Eriksson E, et al. (2003) The CYP19 gene and associations with androgens and abdominal obesity in premenopausal women. Obes Res 11, 578–585

    PubMed  CAS  Google Scholar 

  • Brockmann GA, Haley CS, Renne U, Knott SA, Schwerin M (1998) Quantitative trait loci affecting body weight and fatness from a mouse line selected for extreme high growth. Genetics 150, 369–381

    PubMed  CAS  Google Scholar 

  • Cheverud JM, Vaughn TT, Pletscher LS, Peripato AC, Adams ES, et al. (2001) Genetic architecture of adiposity in the cross of LG/J and SM/J inbred mice. Mamm Genome 12, 3–12

    Article  PubMed  CAS  Google Scholar 

  • Cheverud JM, Ehrich TH, Hrbek T, Kenney JP, Pletscher LS, et al. (2004) Quantitative trait loci for obesity- and diabetes-related traits and their dietary responses to high-fat feeding in LGXSM recombinant inbred mouse strains. Diabetes 53, 3328–3336

    PubMed  CAS  Google Scholar 

  • Corral J, Miralles JM, Garcia-Pascual IJ, Corrales JJ, Garcia-Sastre A, et al. (1992) Increased serum N-acetyl-beta-D-glucosaminidase and alpha-D-mannosidase activities in obese subjects. Clin Invest 70, 880–884

    Article  CAS  Google Scholar 

  • Corva PM, Horvat S, Medrano JF (2001) Quantitative trait loci affecting growth in high growth (hg) mice. Mamm Genome 12, 284–290

    Article  PubMed  CAS  Google Scholar 

  • Croft JB, Morrell D, Chase CL, Swift M (1995) Obesity in heterozygous carriers of the gene for the Bardet–Biedl syndrome. Am J Med Genet 55, 12–15

    Article  PubMed  CAS  Google Scholar 

  • Edwards AL (1973) Statistical Methods (New York: Holt, Rinehart and Winston)

    Google Scholar 

  • Esposito K, Pontillo A, Ciotola M, Di Palo C, Grella E, et al. (2002) Weight loss reduces interleukin-18 levels in obese women. J Clin Endocrinol Metab 87, 3864–3866

    Article  PubMed  CAS  Google Scholar 

  • Esposito K, Pontillo A, Di Palo C, Giugliano G, Masella M, et al. (2003) Effect of weight loss and lifestyle changes on vascular inflammatory markers in obese women: a randomized trial. JAMA 289, 1799–1804

    Article  PubMed  CAS  Google Scholar 

  • Fabsitz RR, Nam JM, Gart J, Stunkard A, Price RA, et al. (1989) HLA associations with obesity. Hum Hered 39, 156–164

    PubMed  CAS  Google Scholar 

  • Farahani P, Fisler JS, Wong H, Diament AL, Yi N, et al. (2004) Reciprocal hemizygosity analysis of mouse hepatic lipase reveals influence on obesity. Obes Res 12, 292–305

    PubMed  CAS  Google Scholar 

  • Ferry RJ Jr, Cerri RW, Cohen P (1999) Insulin-like growth factor binding proteins: new proteins, new functions. Horm Res 51, 53–67

    Article  PubMed  CAS  Google Scholar 

  • Fukumura D, Ushiyama A, Duda DG, Xu L, Tam J, et al. (2003) Paracrine regulation of angiogenesis and adipocyte differentiation during in vivo adipogenesis. Circ Res 93, e88–e97

    Article  PubMed  CAS  Google Scholar 

  • Garcia Pascual JJ, Villar E, Corrales JJ, Garcia-Sastre A, Garcia-Diez LC, et al. (1992) Enzymatic glycosidase activities in experimental obesity. Horm Metab Res 24, 412–415

    Article  PubMed  CAS  Google Scholar 

  • Grupe A, Germer S, Usuka J, Aud D, Belknap JK, et al. (2001) In silico mapping of complex disease-related traits in mice. Science 292, 1915–1918

    Article  PubMed  CAS  Google Scholar 

  • Harada K, Shen WJ, Patel S, Natu V, Wang J, et al. (2003) Resistance to high-fat diet-induced obesity and altered expression of adipose-specific genes in HSL-deficient mice. Am J Physiol Endocrinol Metab 285, E1182–E1195

    PubMed  CAS  Google Scholar 

  • Hasstedt SJ, Hoffman M, Leppert MF, Elbein SC (1997) Recessive inheritance of obesity in familial non-insulin-dependent diabetes mellitus, and lack of linkage to nine candidate genes. Am J Hum Genet 61, 668–677

    PubMed  CAS  Google Scholar 

  • Hausman GJ, Richardson RL (2004) Adipose tissue angiogenesis. J Anim Sci 82, 925–934

    PubMed  CAS  Google Scholar 

  • Hirohata S, Wang LW, Miyagi M, Yan L, Seldin MF, et al. (2002) Punctin, a novel ADAMTS-like molecule, ADAMTSL-1, in extracellular matrix. J Biol Chem 277, 12182–12189

    Article  PubMed  CAS  Google Scholar 

  • Hogan B, Costantini F, Lacy E (1986) Manipulating the Mouse Embryo: A Laboratory Manual (Cold Spring Harbor, NY: Cold Spring Harbor Press)

    Google Scholar 

  • Ideraabdullah FY, de la Casa-Esperon E, Bell TA, Detwiler DA, Magnuson T, et al. (2004) Genetic and haplotype diversity among wild-derived mouse inbred strains. Genome Res 14, 1880–1887

    Article  PubMed  CAS  Google Scholar 

  • Iruela-Arispe ML, Lombardo M, Krutzsch HC, Lawler J, Roberts DD (1999a) Inhibition of angiogenesis by thrombospondin-1 is mediated by 2 independent regions within the type 1 repeats. Circulation 100, 1423–1431

    CAS  Google Scholar 

  • Iruela-Arispe ML, Rodriguez-Manzaneque JC, Abu-Jawdeh G (1999b) Endometrial endothelial cells express estrogen and progesterone receptors and exhibit a tissue specific response to angiogenic growth factors. Microcirculation 6, 127–140

    Article  CAS  Google Scholar 

  • Ishimori N, Li R, Kelmenson PM, Korstanje R, Walsh KA, et al. (2004) Quantitative trait loci that determine plasma lipids and obesity in C57BL/6J and 129S1/SvImJ inbred mice. J Lipid Res 45, 1624–1632

    Article  PubMed  CAS  Google Scholar 

  • Iwaki T, Yamashita H, Hayakawa T (2001) A color atlas of sectional anatomy of the mouse (Tokyo: Adthree Publishing Co., Ltd)

    Google Scholar 

  • Jones ME, Thorburn AW, Britt KL, Hewitt KN, Misso ML, et al. (2001) Aromatase-deficient (ArKO) mice accumulate excess adipose tissue. J Steroid Biochem Mol Biol 79, 3–9

    Article  PubMed  CAS  Google Scholar 

  • Lander E, Kruglyak L (1995) Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet 11, 241–247

    Article  PubMed  CAS  Google Scholar 

  • Lander E, Green P, Abrahamson J, Barlow A, Daley M, et al. (1987) MAPMAKER: An interactive complex package for constructing primary linkage maps of experimental and natural populations. Genomics 1, 174–181

    Article  PubMed  CAS  Google Scholar 

  • Lang DH, Sharkey NA, Mack HA, Vogler GP, Vandenbergh DJ, et al. (2005) Quantitative trait loci analysis of structural and material skeletal phenotypes in C57BL/6J and DBA/2 second-generation and recombinant inbred mice. J Bone Miner Res 20, 88–99

    Article  PubMed  CAS  Google Scholar 

  • Liao G, Wang J, Guo J, Allard J, Cheng J, et al. (2004) In silico genetics: identification of a functional element regulating H2-Ealpha gene expression. Science 306, 690–695

    Article  PubMed  CAS  Google Scholar 

  • Lilla J, Stickens D, Werb Z (2002) Metalloproteases and adipogenesis: a weighty subject. Am J Pathol 160, 1551–1554

    PubMed  CAS  Google Scholar 

  • Mehrabian M, Wen PZ, Fisler J, Davis RC, Lusis AJ (1998) Genetic loci controlling body fat, lipoprotein metabolism, and insulin levels in a multifactorial mouse model. J Clin Invest 101, 2485–2496

    PubMed  CAS  Google Scholar 

  • Mehrabian M, Allayee H, Stockton J, Lum PY, Drake TA, et al. (2005) Integrating genotypic and expression data in a segregating mouse population to identify 5-lipoxygenase as a susceptibility gene for obesity and bone traits. Nat Genet 37, 1224–1233

    Article  PubMed  CAS  Google Scholar 

  • Mir AA, Myakishev MV, Polesskaya OO, Moitra J, Petersen D, et al. (2003) A search for candidate genes for lipodystrophy, obesity and diabetes via gene expression analysis of A-ZIP/F-1 mice. Genomics 81, 378–390

    Article  PubMed  CAS  Google Scholar 

  • Mohan S, Masinde G, Li X, Baylink DJ (2003) Mapping quantitative trait loci that influence serum insulin-like growth factor binding protein-5 levels in F2 mice (MRL/MpJ X SJL/J). Endocrinology 144, 3491–3496

    Article  PubMed  CAS  Google Scholar 

  • Montague CT, Farooqi S, Whitehead JP, Soos MA, Rau H, et al. (1997) Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature 387, 903–908

    Article  PubMed  CAS  Google Scholar 

  • Mykytyn K, Braun T, Carmi R, Haider NB, Searby CC, et al. (2001) Identification of the gene that, when mutated, causes the human obesity syndrome BBS4. Nat Genet 28, 188–191

    Article  PubMed  CAS  Google Scholar 

  • Mykytyn K, Mullins RF, Andrews M, Chiang AP, Swiderski RE, et al. (2004) Bardet–Biedl syndrome type 4 (BBS4)-null mice implicate Bbs4 in flagella formation but not global cilia assembly. Proc Natl Acad Sci USA 101, 8664–8669

    Article  PubMed  CAS  Google Scholar 

  • Netea MG, Joosten LA, Lewis E, Jensen DR, Voshol PJ, et al. (2006) Deficiency of interleukin-18 in mice leads to hyperphagia, obesity and insulin resistance. Nat Med 12, 650–656

    Article  PubMed  CAS  Google Scholar 

  • Okazaki Y, Furuno M, Kasukawa T, Adachi J, Bono H, et al. (2002) Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. Nature 420, 563–573

    Article  PubMed  Google Scholar 

  • Okuno M, Arimoto E, Nishizuka M, Nishihara T, Imagawa M (2002) Isolation of up- or down-regulated genes in PPARgamma-expressing NIH-3T3 cells during differentiation into adipocytes. FEBS Lett 519, 108–112

    Article  PubMed  CAS  Google Scholar 

  • Pederson RA, White HA, Schlenzig D, Pauly RP, McIntosh CH, et al. (1998) Improved glucose tolerance in Zucker fatty rats by oral administration of the dipeptidyl peptidase IV inhibitor isoleucine thiazolidide. Diabetes 47, 1253–1258

    PubMed  CAS  Google Scholar 

  • Perusse L, Rankinen T, Zuberi A, Chagnon YC, Weisnagel SJ, et al. (2005) The human obesity gene map: the 2004 update. Obes Res 13, 381–490

    PubMed  CAS  Google Scholar 

  • Pletcher MT, McClurg P, Batalov S, Su AI, Barnes SW, et al. (2004) Use of a dense single nucleotide polymorphism map for in silico mapping in the mouse. PLoS Biol 2, e393

    Article  PubMed  CAS  Google Scholar 

  • Price AH (2006) Believe it or not, QTLs are accurate! Trends Plant Sci 11, 213–216

    Article  PubMed  CAS  Google Scholar 

  • Reed DR, Ding Y, Xu W, Cather C, Price R (1995) Human obesity does not segregate with the chromosomal regions of Prader–Willi, Bardet–Biedl, Borjeson or Wilson–Turner syndromes. Int J Obes Relat Metab Disord 19, 599–603

    PubMed  CAS  Google Scholar 

  • Reed DR, Li X, McDaniel AH, Lu K, Li S, et al. (2003) Loci on chromosomes 2, 4, 9 and 16 for body weight, body length and adiposity identified in a genome scan of an F2 intercross between the 129P3/J and C57BL/6ByJ mouse strains. Mamm Genome 14, 302–313

    Article  PubMed  CAS  Google Scholar 

  • Reed DR, McDaniel AH, Li X, Tordoff MG, Bachmanov AA (2006) Quantitative trait loci for individual adipose depots weights in C57BL/6ByJ and 129P3/J F2 mice. Mamm Genome 17, xxx–xxx

    Google Scholar 

  • Remes T, Vaisanen SB, Mahonen A, Huuskonen J, Kroger H, et al. (2003) Aerobic exercise and bone mineral density in middle-aged finnish men: a controlled randomized trial with reference to androgen receptor, aromatase, and estrogen receptor alpha gene polymorphisms small star, filled. Bone 32, 412–420

    Article  PubMed  CAS  Google Scholar 

  • Ronimus RS, Morgan HW (2004) Cloning and biochemical characterization of a novel mouse ADP-dependent glucokinase. Biochem Biophys Res Commun 315, 652–658

    Article  PubMed  CAS  Google Scholar 

  • Salih DA, Tripathi G, Holding C, Szestak TA, Gonzalez MI, et al. (2004) Insulin-like growth factor-binding protein 5 (Igfbp5) compromises survival, growth, muscle development, and fertility in mice. Proc Natl Acad Sci USA 101, 4314–4319

    Article  PubMed  CAS  Google Scholar 

  • Sekimoto H, Boney CM (2003) C-terminal Src kinase (CSK) modulates insulin-like growth factor-I signaling through Src in 3T3-L1 differentiation. Endocrinology 144, 2546–2552

    Article  PubMed  CAS  Google Scholar 

  • St-Pierre J, Miller-Felix I, Paradis ME, Bergeron J, Lamarche B, et al. (2003) Visceral obesity attenuates the effect of the hepatic lipase -514C>T polymorphism on plasma HDL-cholesterol levels in French-Canadian men. Mol Genet Metab 78, 31–36

    Article  PubMed  CAS  Google Scholar 

  • Stylianou IM, Korstanje R, Li R, Sheehan S, Paigen B, et al. (2006) Quantitative trait locus analysis for obesity reveals multiple networks of interacting loci. Mamm Genome 17, 22–36

    Article  PubMed  Google Scholar 

  • Taylor BA, Tarantino LM, Phillips SJ (1999) Gender-influenced obesity QTLs identified in a cross involving the KK type II diabetes-prone mouse strain. Mamm Genome 10, 963–968

    Article  PubMed  CAS  Google Scholar 

  • Truett GE, Heeger P, Mynatt RL, Truett AA, Walker JA, et al. (2000) Preparation of PCR-quality mouse genomic DNA with hot sodium hydroxide and tris (HotSHOT). Biotechniques 29, 52–54

    PubMed  CAS  Google Scholar 

  • Tworoger SS, Chubak J, Aiello EJ, Yasui Y, Ulrich CM, et al. (2004) The effect of CYP19 and COMT polymorphisms on exercise-induced fat loss in postmenopausal women. Obes Res 12, 972–981

    PubMed  CAS  Google Scholar 

  • Vartanian V, Lowell B, Minko IG, Wood TG, Ceci JD, et al. (2006) The metabolic syndrome resulting from a knockout of the NEIL1 DNA glycosylase. Proc Natl Acad Sci USA 103, 1864–1869

    Article  PubMed  CAS  Google Scholar 

  • Vauti F, Meyer N, Ruiz P, Kumar S, Arnold H (2003) Mutation of a novel gene in the mouse results in reduction of body weight and fat tissue. 17th International Mouse Genome Conference, Braunschweig, Germany

  • Voros G, Maquoi E, Collen D, Lijnen HR (2003) Differential expression of plasminogen activator inhibitor-1, tumor necrosis factor-alpha, TNF-alpha converting enzyme and ADAMTS family members in murine fat territories. Biochim Biophys Acta 1625, 36–42

    PubMed  CAS  Google Scholar 

  • Wade CM, Kulbokas EJ, Kirby AW, Zody MC, Mullikin JC, et al. (2002) The mosaic structure of variation in the laboratory mouse genome. Nature 420, 574–578

    Article  PubMed  CAS  Google Scholar 

  • West DB, Goudey-Lefevre J, York B, Truett GE (1994a) Dietary obesity linked to genetic loci on chromosome 9 and 15 in a polygenic mouse model. J Clin Invest 94, 1410–1416

    Article  CAS  Google Scholar 

  • West DB, Waguespack J, York B, Goudey-Lefevre J, Price RA (1994b) Genetics of dietary obesity in AKR/J X SWR/J mice: segregation of the trait and identification of a linked locus on Chromosome 4. Mamm Genome 5, 546–552

    Article  CAS  Google Scholar 

  • Wiltshire T, Pletcher MT, Batalov S, Barnes SW, Tarantino LM, et al. (2003) Genome-wide single-nucleotide polymorphism analysis defines haplotype patterns in mouse. Proc Natl Acad Sci USA 100, 3380–3385

    Article  PubMed  CAS  Google Scholar 

  • Yaguchi H, Togawa K, Moritani M, Itakura M (2005) Identification of candidate genes in the type 2 diabetes modifier locus using expression QTL. Genomics 85, 591–599

    Article  PubMed  CAS  Google Scholar 

  • Yalcin B, Fullerton J, Miller S, Keays DA, Brady S, et al. (2004) Unexpected complexity in the haplotypes of commonly used inbred strains of laboratory mice. Proc Natl Acad Sci USA 101, 9734–9739

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Hunter KW, Gandolph M, Rowe WL, Finney RP, et al. (2005) A high-resolution multistrain haplotype analysis of laboratory mouse genome reveals three distinctive genetic variation patterns. Genome Res 15, 241–249

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, et al. (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372, 425–432

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Grants from the National Institutes of Health funded this research (R01DK058797 to DRR, R01AA011028 and R01DC00882 to AAB, and R01DK046791 and R01AA12715 to MGT). The authors acknowledge Matthew Thomas, Senior Scientist at DNAPrint, for his assistance with genotyping services, and Dr. Kelly Ewen-White and Paige Stevenson, the Genotyping Section at the Australian Genome Research Facility, for additional genotyping. Maria Theodorides and Fujiko Duke provided excellent technical assistance. Early data collection for this experiment was conducted in the laboratory of R. Arlen Price, and his support is gratefully acknowledged. Patricia Watson provided helpful editorial advice. Discussions with Hong Ji, Mark I. Friedman, and Caroline M. Pond enhanced the quality of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danielle R. Reed.

Additional information

The following sequences have been submitted to the GenBank database: Thsd4: Accession Nos. DQ424862 and DQ517441 and Lsm16: Accession Nos. DQ240818-DQ240819.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McDaniel, A.H., Li, X., Tordoff, M.G. et al. A locus on mouse Chromosome 9 (Adip5) affects the relative weight of the gonadal but not retroperitoneal adipose depot. Mamm Genome 17, 1078–1092 (2006). https://doi.org/10.1007/s00335-006-0055-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-006-0055-1

Keywords

Navigation