Skip to main content
Log in

The rat prolactin gene family locus: species-specific gene family expansion

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

In the rat there is a large family of paralogous genes related to prolactin (PRL). Members of the PRL family are expressed in cell- and temporal-specific patterns in the anterior pituitary, uterus, and placenta. An overriding feature of the PRL family is its association with pregnancy. In this investigation, we used information derived from the public rat genome database as a tool for identifying new members of the rat PRL family. The entire rat PRL gene family locus spans approximately 1.7 megabases (Mb) on Chromosome 17. Genes possessed either 5- or 6-exon organization patterns. We provide information on three newly identified genes orthologous to previously identified members of the mouse PRL gene family [placental lactogen-Iα (PL-Iα), PL-Iβ, and proliferin (PLF)] and a new member of the PRL family, termed PRL-like protein-P (PLP-P). Information is also presented on the existence of multiple PLP-M transcripts, which are generated by alternative splicing. Expansion of the PRL family has occurred independently in rodents versus the cow and does not exist in the human and dog. Elucidation of the rat PRL gene family locus provides tools for studying the genetics and biology of the rat PRL family and new insights into species-specific gene family expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

References

  • Ain R, Canham LN, Soares MJ (2003) Gestation stage-dependent intrauterine trophoblast cell invasion in the rat and mouse: novel endocrine phenotype and regulation. Dev Biol 260; 176–190

    Article  PubMed  CAS  Google Scholar 

  • Ain R, Dai G, Dunmore JH, Godwin AR, Soares MJ (2004) A prolactin family paralog regulates reproductive adaptations to a physiological stressor. Proc Natl Acad Sci USA 101: 16543–16548

    Article  PubMed  CAS  Google Scholar 

  • Ain R, Konno T, Canham LN, Soares MJ (2006) Phenotypic analysis of the placenta in the rat. In Placenta and Trophoblast: Methods and Protocols, Vol. I, Soares MJ, Hunt JS (eds.) (Totowa, NJ: Humana Press), pp 295–313

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215: 403–410

    Article  PubMed  CAS  Google Scholar 

  • Astwood EB, Greep RO (1938) A corpus luteum stimulating substance in the rat placenta. Proc Soc Exp Biol Med 38: 713–716

    Google Scholar 

  • Bole-Feysot C, Goffin V, Edery M, Binart N, Kelly PA (1998) Prolactin (PRL) and its receptor: actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice. Endocr Rev 19: 225–268

    Article  PubMed  CAS  Google Scholar 

  • Braissant O, Wahli W (1998) A simplified in situ hybridization protocol using non-radioactively labeled probes to detect abundant and rare mRNAs on tissue sections. Biochemica 1: 10–16

    Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162: 156–159

    Article  PubMed  CAS  Google Scholar 

  • Clapp C, Sears PS, Russell DH, Richards J, Levay-Young BK, et al. (1988) Biological and immunological characterization of cleaved and 16K forms of rat prolactin. Endocrinology 122: 2892

    PubMed  CAS  Google Scholar 

  • Cohick CB, Dai G, Xu L, Deb S, Kamei T, et al. (1996) Placental lactogen-I variant utilizes the prolactin receptor signaling pathway. Mol Cell Endocrinol 116: 49–58

    Article  PubMed  CAS  Google Scholar 

  • Colosi P, Ogren L, Thordarson G, Talamantes F (1987a) Purification and partial characterization of two prolactin-like glycoprotein hormone complexes from the midpregnant mouse conceptus. Endocrinology 120: 2500–2511

    CAS  Google Scholar 

  • Colosi P, Talamantes F, Linzer DIH (1987b) Molecular cloning and expression of mouse placental lactogen I complementary deoxyribonucleic acid. Mol Endocrinol 1: 767–776

    CAS  Google Scholar 

  • Colosi P, Ogren L, Southard JN, Thordarson G, Linzer DI, et al. (1988) Biological, immunological, and binding properties of recombinant mouse placental lactogen-I. Endocrinology 123: 2662–2667

    PubMed  CAS  Google Scholar 

  • Cooke NE, Liebhaber SA (1995) Molecular biology of the growth hormone-prolactin gene system. Vitam Horm 50: 385–459

    Article  PubMed  CAS  Google Scholar 

  • Cooke NE, Coit D, Weiner RI, Baxter JD, Martial JA (1980) Structure of cloned DNA complementary to rat prolactin messenger RNA. J Biol Chem 255: 6502–6510

    PubMed  CAS  Google Scholar 

  • Corbacho AM, Martinez de la Escalera G, Clapp C (2002) Roles of prolactin and related members of the prolactin/growth hormone/placental lactogen family in angiogenesis. J Endocrinol 173: 219–238

    Article  PubMed  CAS  Google Scholar 

  • Dai G, Imagawa W, Liu B, Szpirer C, Levan G, et al. (1996a) Rcho-1 trophoblast cell placental lactogens: complementary deoxyribonucleic acids, heterologous expression, and biological activities. Endocrinology 137: 5020–5027

    Article  CAS  Google Scholar 

  • Dai G, Liu B, Szpirer C, Levan G, Kwok SCM, et al. (1996b) Prolactin-like protein-C variant: complementary deoxyribonucleic acid, unique six exon gene structure, and trophoblast cell-specific expression. Endocrinology 137: 5009–5019

    Article  CAS  Google Scholar 

  • Dai G, Wang D, Liu B, Kasik JW, Müller H, et al. (2000) Three novel paralogs of the rodent prolactin gene family. J Endocrinol 166: 63–75

    Article  PubMed  CAS  Google Scholar 

  • Dai G, Lu L, Tang S, Peal MJ, Soares MJ (2002) Prolactin family miniarray: a tool for evaluating uteroplacental-trophoblast endocrine cell phenotypes. Reproduction 124: 755–765

    Article  PubMed  CAS  Google Scholar 

  • Deb S, Faria TN, Roby KF, Larsen D, Kwok SC, et al. (1991a) Identification and characterization of a new member of the prolactin family, placental lactogen-I variant. J Biol Chem 266: 1605–1610

    CAS  Google Scholar 

  • Deb S, Roby KF, Faria TN, Larsen D, Soares MJ (1991b) Identification and immunochemical characterization of a major placental secretory protein related to the prolactin-growth hormone family, prolactin-like protein-C. Endocrinology 128: 3066–3072

    CAS  Google Scholar 

  • Deb S, Roby KF, Faria TN, Szpirer C, Levan G, et al. (1991c) Molecular cloning and characterization of prolactin-like protein C complementary deoxyribonucleic acid. J Biol Chem 266: 23027–23032

    CAS  Google Scholar 

  • Deussing J, Kouadio M, Rehman S, Werber I, Schwinde A, et al. (2002) Identification and characterization of a dense cluster of placenta-specific cysteines peptidase genes and related genes on mouse chromosome 13. Genomics 79: 225–240

    Article  PubMed  CAS  Google Scholar 

  • Dorshkind K, Horseman ND (2001) Anterior pituitary hormones, stress, and immune system homeostasis. BioEssays 23: 288–294

    Article  PubMed  CAS  Google Scholar 

  • Duckworth ML, Kirk KL, Friesen HG (1986a) Isolation and identification of a cDNA clone of rat placental lactogen II. J Biol Chem 261: 10871–10878

    CAS  Google Scholar 

  • Duckworth ML, Peden LM, Friesen HG (1986b) Isolation of a novel prolactin-like cDNA clone from developing rat placenta. J Biol Chem 261: 10879–10884

    CAS  Google Scholar 

  • Duckworth ML, Peden LM, Friesen HG (1988) A third prolactin-like protein expressed by the developing rat placenta: complementary deoxyribonucleic acid sequence and partial structure of the gene. Mol Endocrinol 2: 912–920

    PubMed  CAS  Google Scholar 

  • Faria TN, Soares MJ (1991) Trophoblast cell differentiation: establishment, characterization, and modulation of a rat trophoblast cell line expressing members of the placental prolactin family. Endocrinology 129: 2895–2906

    PubMed  CAS  Google Scholar 

  • Faria TN, Deb S, Kwok SCM, Talamantes F, Soares MJ (1990) Ontogeny of placental lactogen-I and placental lactogen-II expression in the developing rat placenta. Dev Biol 141: 279–291

    Article  PubMed  CAS  Google Scholar 

  • Faria TN, Ogren L, Talamantes F, Linzer DI, Soares MJ (1991) Localization of placental lactogen-I in trophoblast giant cells of the mouse placenta. Biol Reprod 44: 327–331

    Article  PubMed  CAS  Google Scholar 

  • Fassett JT, Nilsen-Hamilton M (2001) Mrp3, a mitogen-regulated protein/proliferin gene expressed in wound healing and in hair follicles. Endocrinology 142: 2129–2137

    Article  PubMed  CAS  Google Scholar 

  • Fassett JT, Hamilton RT, Nilsen-Hamilton M (2000) Mrp4, a new mitogen-regulated protein/proliferin gene; unique in this gene family for its expression in the adult mouse tail and ear. Endocrinology 141: 1863–1871

    Article  PubMed  CAS  Google Scholar 

  • Forsyth IA, Wallis M (2002) Growth hormone and prolactin. Molecular and functional evolution. J Mammary Gland Biol Neoplasia 7: 291–312

    Article  PubMed  Google Scholar 

  • Francino MP (2005) An adaptive radiation model for the origin of new gene functions. Nat Genet 37: 573–577

    Article  PubMed  CAS  Google Scholar 

  • Goffin V, Binart N, Touraine P, Kelly PA (2002) Prolactin: the new biology of an old hormone. Annu Rev Physiol 64: 47–67

    Article  PubMed  CAS  Google Scholar 

  • Gubbins EJ, Maurer RA, Hartley JL, Donelson JE (1979) Construction and analysis of recombinant DNAs containing a structural gene for rat prolactin. Nucleic Acids Res 6: 915–930

    PubMed  CAS  Google Scholar 

  • Hiraoka Y, Ogawa M, Sakai Y, Takeuchi Y, Komatsu N, et al. (1999) PLP-I: a novel prolactin-like gene in rodents. Biochem Biophys Acta 1447: 291–297

    PubMed  CAS  Google Scholar 

  • Hirosawa M, Miura R, Min KS, Hattori N, Shiota K, et al. (1994) A cDNA encoding a new member of the rat placental lactogen family, PL-I mosaic (PL-Im). Endocr J 41: 387–397

    PubMed  CAS  Google Scholar 

  • Hughes AL, Green JA, Piontkivska H, Roberts RM (2003) Aspartic proteinase phylogeny and the origin of pregnancy-associated glycoproteins. Mol Biol Evol 20: 1940–1945

    Article  PubMed  CAS  Google Scholar 

  • Hwang IT, Lee YH, Moon BC, Ahn KY, Lee SW, et al. (2000) Identification and characterization of a new member of the placental prolactin-like protein-C (PLP-C) subfamily, PLP-Cβ. Endocrinology 141: 3343–3352

    Article  PubMed  CAS  Google Scholar 

  • Ishibashi K, Imai M (1999) Identification of four new members of the rat prolactin/growth hormone gene family. Biochem Biophys Res Commun 262: 575–578

    Article  PubMed  CAS  Google Scholar 

  • Iwatsuki K, Shinozaki M, Hattori N, Hirasawa K, Itagaki S, et al. (1996) Molecular cloning and characterization of a new member of the rat placental prolactin (PRL) family, PRL-like protein D (PLP-D). Endocrinology 137: 3849–3855

    Article  PubMed  CAS  Google Scholar 

  • Iwatsuki K, Oda M, Sun W, Tanaka S, Ogawa T, et al. (1998) Molecular cloning and characterization of a new member of the rat placental prolactin (PRL) family, PRL-like protein H. Endocrinology 139: 4976–4983

    Article  PubMed  CAS  Google Scholar 

  • Jackson D, Volpert OV, Bouck N, Linzer DIH (1994) Stimulation and inhibition of angiogenesis by placental proliferin and proliferin-related protein. Science 266: 1581–1584

    PubMed  CAS  Google Scholar 

  • Kelly PA, Shiu RP, Robertson MC, Friesen HG (1975) Characterization of rat chorionic mammotropin. Endocrinology 96: 1187–1195

    PubMed  CAS  Google Scholar 

  • Kopelman NM, Lancet D, Yanai I (2005) Alternative splicing and gene duplication are inversely correlated evolutionary mechanisms. Nat Genet 37: 588–589

    Article  PubMed  CAS  Google Scholar 

  • Lee SJ, Talamantes F, Wilder E, Linzer DIH, Nathans D (1988) Trophoblastic giant cells of the mouse placenta as the site of proliferin synthesis. Endocrinology 122: 1761–1768

    PubMed  CAS  Google Scholar 

  • Lewis UJ (1984) Variants of growth hormone and prolactin and their posttranslational modifications. Annu Rev Physiol 46: 33–42

    Article  PubMed  CAS  Google Scholar 

  • Lindblad-Toh K, Wade CM, Mikkelsen TS, Karlsson EK, Jaffe DB, et al. (2005) Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature 438: 803–819

    Article  PubMed  CAS  Google Scholar 

  • Linzer DIH, Lee SJ, Ogren L, Talamantes F, Nathans D (1985) Identification of proliferin mRNA and protein in mouse placenta. Proc Natl Acad Sci USA 82: 4356–4359

    Article  PubMed  CAS  Google Scholar 

  • MacLean JA, Chakrabarty A, Xie S, Bixby JA, Roberts RM, et al. (2003) Family of Kunitz proteins from trophoblast: expression of Kunitz domain proteins in cattle and sheep. Mol Reprod Dev 65: 30–40

    Article  PubMed  CAS  Google Scholar 

  • MacLean JA, Chen MA, Wayne CM, Bruce SR, Rao M, et al. (2005) Rhox: a new homeobox gene cluster. Cell 120: 369–382

    Article  PubMed  CAS  Google Scholar 

  • MacLean JA, Lorenzetti D, Hu Z, Salerno WJ, Miller J, et al. (2006) Rhox homeobox gene cluster: recent duplication of three family members. Genesis 44: 122–129

    Article  PubMed  CAS  Google Scholar 

  • Mallon A-M, Wilming L, Weekes J, Gilbert JGR, Ashurst J, et al. (2004) Organziation and evolution of a gene-rich region of the mouse genome: a 12.7 Mb region deleted in the Del(13)Svea36H mouse. Genome Res 14: 1888–1901

    Article  PubMed  CAS  Google Scholar 

  • Markoff E, Sigel MB, Lacour N, Seavey BK, Friesen HG, et al. (1988) Glycosylation selectively alters the biological activity of prolactin. Endocrinology 123: 1303–136

    PubMed  CAS  Google Scholar 

  • Mason RW, Stabley DL, Picerno GN, Frenck J, Xing S, et al. (2002) Evolution of placental proteases. Biol Chem 383: 1113–1118

    Article  PubMed  CAS  Google Scholar 

  • Maston GA, Ruvolo M (2002) Chorionic gonadotropin has a recent origin within primates and an evolutionary history of selection. Mol Biol Evol 19: 320–335

    PubMed  CAS  Google Scholar 

  • McLellan AS, Fischer B, Dveksler G, Hori T, Wyne F, et al. (2005a) Structure and evolution of the mouse pregnancy-specific glycoprotein (Psg) gene locus. BMC Genomics 6: 4

    Article  CAS  Google Scholar 

  • McLellan AS, Zimmerman W, Moore T (2005b) Conservation of pregnancy-specific glycoprotein (PSG) N domains following independent expansions of the gene families in rodents and primates. BMC Evolutionary Biol 5: 39

    Article  CAS  Google Scholar 

  • Mouse Genome Sequencing Consortium (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420: 520–562

    Article  CAS  Google Scholar 

  • Niall HD, Hogan ML, Sauer R, Rosenblum IY, Greenwood FC (1971) Sequences of pituitary and placental lactogenic and growth hormones: evolution from a primordial peptide by gene duplication. Proc Natl Acad Sci USA 68: 866–870

    Article  PubMed  CAS  Google Scholar 

  • Nicoll CS (1980) Ontogeny and evolution of prolactin’s functions. Fed Proc 39: 2563–2566

    PubMed  CAS  Google Scholar 

  • Nicoll CS, Bern HA (1972) On the actions of prolactin among the vertebrates: is there a common denominator? In Lactogenic Hormones, Wolstenholme GEW, Knight J (eds.) (London: Churchill Livingstone), pp 299–337

    Google Scholar 

  • Nicoll CS, Mayer GL, Russell SM (1986) Structural features of prolactins and growth hormones that can be related to their biological properties. Endocr Rev 7: 169–203

    PubMed  CAS  Google Scholar 

  • Nielsen H, Engelbrecht J, Brunak S, von Heijne G (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10: 1–66

    Article  PubMed  CAS  Google Scholar 

  • Oetting WS, Tuazon PT, Traugh JA, Walker AM (1988) Phosphorylation of prolactin. J Biol Chem 261: 1649–1652

    Google Scholar 

  • Ozturk A, Fresnoza A, Savoie A, Duckworth HW, Duckworth ML (2003) Defining regulatory regions in the rat prolactin gene family locus using a large P1 genomic clone. Endocrinology 144: 4742–4754

    Article  PubMed  CAS  Google Scholar 

  • Page RDM (1996) TREEVIEW: An application to display phylogenetic trees on personal computers. Comput Appl Biosci 12: 357–358

    PubMed  CAS  Google Scholar 

  • Pencharz RL, Long JA (1931) The effect of hypophysectomy on gestation in the rat. Science 74, 206

    PubMed  Google Scholar 

  • Rat Genome Sequencing Project Consortium (2004) Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature 428: 493–521

    Article  CAS  Google Scholar 

  • Roberts RM, Ezashi T, Rosenfeld CS, Ealy AD, Kubisch HM (2003) Evolution of interferon tau genes and their promoters, and maternal-trophoblast interactions in control of their expression. Reprod Suppl 61: 239–251

    PubMed  CAS  Google Scholar 

  • Robertson MC, Friesen HG (1975) The purification and characterization of rat placental lactogen. Endocrinology 97: 621–629

    CAS  Google Scholar 

  • Robertson MC, Friesen HG (1981) Two forms of rat placental lactogen revealed by radioimmunoassay. Endocrinology 108: 2388–2390

    Article  PubMed  CAS  Google Scholar 

  • Robertson MC, Croze F, Schroedter IC, Friesen HG (1990) Molecular cloning and expression of rat placental lactogen-I complementary deoxyribonucleic acid. Endocrinology 127: 702–710

    PubMed  CAS  Google Scholar 

  • Robertson MC, Schroedter IC, Friesen HG (1991) Molecular cloning and expression of rat placental lactogen-Iv, a variant of rPL-I present in late pregnant rat placenta. Endocrinology 129: 2746–2756

    Article  PubMed  CAS  Google Scholar 

  • Robertson MC, Cosby H, Shiu RP (1996) Rat placental lactogen-I variant (rPL-Iv), product of an unique gene, is biologically different from rPL-I. Endocrinology 137: 5242–5249

    Article  PubMed  CAS  Google Scholar 

  • Roby KF, Deb S, Gibori G, Szpirer C, Levan G, et al. (1993) Decidual prolactin-related protein. Identification, molecular cloning, and characterization. J Biol Chem 268: 3136–3142

    PubMed  CAS  Google Scholar 

  • Sahgal N, Knipp GT, Liu B, Chapman BM, Dai G, et al. (2000) Identification of two new nonclassical members of the rat prolactin family. J Mol Endocrinol 24: 95–108

    Article  PubMed  CAS  Google Scholar 

  • Sahgal N, Canham LN, Canham B, Soares MJ (2006) Rcho-1 trophoblast cells: a model for studying trophoblast differentiation. In Placenta and Trophoblast: Methods and Protocols, Vol. 1, Soares MJ, Hunt JS (eds.) (Totowa, NJ: Humana Press), pp 159–178

    Google Scholar 

  • Schuler LA, Kessler MA (1992) Bovine placental prolactin-related hormones. Trends Endocrinol Metabol 3: 334–338

    Article  CAS  Google Scholar 

  • Sigmund CD, Gross KW (1991) Structure, expression, and regulation of the murine renin genes. Hypertension 18, 446–457

    PubMed  CAS  Google Scholar 

  • Sinha YN (1995) Structural variants of prolactin: occurrence and physiological significance. Endocr Rev 16: 354–369

    Article  PubMed  CAS  Google Scholar 

  • Soares MJ (2004) The prolactin and growth hormone families: pregnancy-specific hormones/cytokines at the maternal-fetal interface. Reprod Biol Endocrinol 2: 51

    Article  PubMed  CAS  Google Scholar 

  • Soares MJ, Julian JA, Glasser SR (1985) Trophoblast giant cell release of placental lactogens: temporal and regional characteristics. Dev Biol 107: 520–526

    Article  PubMed  CAS  Google Scholar 

  • Sol-Church K, Picerno GN, Stabley DL, Frenck J, Xing S, et al. (2002) Evolution of placentally expressed cathepsins. Biochem Biophys Res Commun 293: 23–29

    Article  PubMed  CAS  Google Scholar 

  • Tanaka TS, Jaradat SA, Lim MK, Kargul GJ, Wang X, et al. (2000) Genome-wide expression profiling of mid-gestation placenta and embryo using 15,000 mouse developmental cDNA microarray. Proc Natl Acad Sci USA 97: 9127–9132

    Article  PubMed  Google Scholar 

  • Telgmann R, Gellersen B (1998) Marker genes of decidualization: activation of the decidual prolactin gene. Hum Reprod Update 4: 472–479

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673–4680

    PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25: 4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Toft DJ, Linzer DIH (1999) Prolactin (PRL)-like protein J, a novel member of the PRL/growth hormone family, is exclusively expressed in maternal decidua. Endocrinology 140: 5095–5101

    Article  PubMed  CAS  Google Scholar 

  • Toft DJ, Linzer DIH (2000) Identification of three prolactin-related hormones as markers of invasive trophoblasts in the rat. Biol Reprod 63: 519–525

    Article  PubMed  CAS  Google Scholar 

  • Toft DJ, Rosenberg SB, Bergers G, Volpert O, Linzer DIH (2001) Reactivation of proliferin gene expression is associated with increased angiogenesis in a cell culture model of fibrosarcoma tumor progression. Proc Natl Acad Sci USA 98: 13055–13059

    Article  PubMed  CAS  Google Scholar 

  • Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, et al. (2001) The sequence of the human genome. Science 291: 1304–1351

    Article  PubMed  CAS  Google Scholar 

  • Vrana PB, Matteson PG, Schmidt JV, Ingram RS, Joyce A, et al. (2001) Genomic imprinting of a placental lactogen gene in Peromyscus. Dev Genes Evol 211: 523–532

    Article  PubMed  CAS  Google Scholar 

  • Wallis M (1992) The expanding growth hormone/prolactin family. J Mol Endocrinol 9: 185–188

    Article  PubMed  CAS  Google Scholar 

  • Wicks JR, Brooks CL (1995) Biological activity of phosphorylated and dephosphorylated bovine prolactin. Mol Cell Endocrinol 112: 223–229

    Article  PubMed  CAS  Google Scholar 

  • Wiemers DO, Ain R, Ohboshi S, Soares MJ (2003a) Migratory trophoblast cells express a newly identified member of the prolactin gene family. J Endocrinol 179: 335–346

    Article  CAS  Google Scholar 

  • Wiemers DO, Shao L-J, Ain R, Dai G, Soares MJ (2003b) The mouse prolactin gene family locus. Endocrinology 144: 313–325

    Article  CAS  Google Scholar 

  • Wilder EL, Linzer DIH (1986) Expression of multiple proliferin genes in mouse cells. Mol Cell Biol 6: 3283–3286

    PubMed  CAS  Google Scholar 

  • Xie S, Green J, Bixby JB, Szafranska B, De Martini JC, et al. (1997) The diversity and evolutionary relationships of the pregnancy-associated glycoproteins, an aspartic proteinase subfamily consisting of many trophoblast-expressed genes. Proc Natl Acad Sci USA 94: 12809–12816

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Soares.

Additional information

Ho-Chen: Recipient of an Individual National Research Service Award Predoctoral Fellowship from the National Institutes of Health (HD45052).

This work was supported by grants from the National Institutes of Health (HD20676, HD039878, HD48861) and the Hall Family Foundation.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alam, S.K., Ain, R., Konno, T. et al. The rat prolactin gene family locus: species-specific gene family expansion. Mamm Genome 17, 858–877 (2006). https://doi.org/10.1007/s00335-006-0010-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-006-0010-1

Keywords

Navigation