Skip to main content
Log in

Gene expression analysis in a canine model of X-linked Alport syndrome

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

Chronic kidney disease (CKD) often culminates in renal failure as a consequence of progressive interstitial fibrosis and is an important cause of illness and death in dogs. Identification of disease biomarkers and gene expression changes will yield valuable information regarding the specific biological pathways involved in disease progression. Toward these goals, gene expression changes in the renal cortex of dogs with X-linked Alport syndrome (XLAS) were examined using microarray technology. Extensive changes in inflammatory, metabolic, immune, and extracellular matrix biology were revealed in affected dogs. Statistical analysis showed 133 genes that were robustly induced or repressed in affected animals relative to age-matched littermates. Altered expression of numerous major histocompatibility complex (MHC) molecules suggests that the immune system plays a significant role in XLAS. Increased expression of COL4A1 and TIMP-1 at the end stage of disease supports the suggestion that expression increases in association with progression of fibrosis and confirms an observation of increased COL4A1 protein expression. Clusterin may function as one of the primary defenses of the renal cortex against progressive injury in dogs with XLAS, as demonstrated here by increased CLU gene expression. Cellular mechanisms that function during excess oxidative stress might also act to deter renal damage, as evidenced by alterations in gene expression of SOD1, ACO1, FDXR, and GPX1. This investigation provides a better understanding of interstitial fibrosis pathogenesis, and potential biomarkers for early detection, factors that are essential to discovering more effective treatments thereby reducing clinical illness and death due to CKD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Baker TK, Higgins MA, Carfagna MA, Ryan TP (2003) Characterization of hepatocytes and their use as a model system in toxicogenomics. In: An Introduction to Toxicogenomics, Burczynski ME, (ed.) (Boca Raton, FL: CRC Press), pp 117–143

    Google Scholar 

  • Baker KE, Parker R (2004) Nonsense-mediated mRNA decay; terminating erroneous gene expression. Curr Opin Cell Biol 16, 293–299

    Article  PubMed  CAS  Google Scholar 

  • Basile DP, Martin DR, Hammerman MH (1998) Extracellular matrix related genes in kidney post-ischemic injury: potential role for TGF-B in repair. Am J Physiol Renal Physiol 275, F894–F903

    CAS  Google Scholar 

  • Basile DP, Donohoe D, Roethe K, Osborn J (2001) Renal ischemic injury results in permanent damage to peritubular capillaries and influences long-term function. Am J Physiol Renal Physiol 281, F887–F899

    PubMed  CAS  Google Scholar 

  • Basile D, Fredrich K, Weihrauch DW, Hattan N, Chilian WM (2004) Angiostatin and matrix metalloprotease expression following ischemic acute renal failure. Am J Physiol Renal Physiol 286, F893–F902

    Article  PubMed  CAS  Google Scholar 

  • Basile DP, Fredrich K, Alausa M, Vio CP, Liang M, et al. (2005) Identification of persistently altered gene expression in the kidney after functional recovery from ischemic acute renal failure. Am J Physiol Renal Physiol 288, F953–F963

    Article  PubMed  CAS  Google Scholar 

  • Bernard MA, Valli VE (1977) Familial renal disease in Samoyed dogs. Can Vet J 18, 181–189

    PubMed  CAS  Google Scholar 

  • Branton MH, Kopp JB (1999) TGF-beta and fibrosis. Microbes Infect 1, 1349–1365

    Article  PubMed  CAS  Google Scholar 

  • Cox ML, Lees GE, Kashtan CE, Murphy KE (2003) Genetic cause of X-linked Alport syndrome in a family of domestic dogs. Mamm Genome 14, 396–403

    Article  PubMed  CAS  Google Scholar 

  • Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2, 161–174

    Article  PubMed  CAS  Google Scholar 

  • Gene Ontology Consortium (2000) Gene Ontology: tool for the unification of biology. Nat Genet 25, 25–29

    Article  CAS  Google Scholar 

  • Gross O, Netzer KO, Lambrecht R, Seibold S, Weber M (2002) Meta-analysis of genotype-phrnotype correlation in X-linked Alport syndrome: impact on clinical counseling. Nephrol Dial Transplant 17, 1218–1227

    Article  PubMed  Google Scholar 

  • Hara I, Miyake H, Gleaye ME, Kamidono S (2001) Introduction of clusterin gene into human renal cell carcinoma cells enhances their resistance to cytotoxic chemotherapy through inhibition of apoptosis both in vitro and in vivo. Jpn J Cancer Res 92, 1220–1224

    PubMed  CAS  Google Scholar 

  • Harendza S, Schneider A, Helmchen U, Stahl RA (1999) Extracellular matrix deposition and cell proliferation in a model of chronic glomerulonephritis in the rat. Nephrol Dial Transplant 14, 2873–2879

    Article  PubMed  CAS  Google Scholar 

  • Higgins MA, Berridge BR, Mills BJ, Schultze AE, Gao H, et al. (2003) Gene expression analysis of the acute phase response using a canine microarray. Toxicol Sci 74, 470–484

    Article  PubMed  CAS  Google Scholar 

  • Huijun W, Long C, Zhigang Z, Feng J, Muyi G (2005) Ex vivo transfer of the decorin gene into rat glomerulus via a mesangial cell vector suppressed extracellular matrix accumulation in experimental glomerulonephritis. Exp Mol Pathol 78, 17–24

    Article  PubMed  CAS  Google Scholar 

  • Humes HD (1995) Acute renal failure: prevailing challenges and prospects for the future. Kidney Int Suppl 50, S26–S32

    PubMed  CAS  Google Scholar 

  • Isaka Y, Akagi Y, Ando Y, Tsujie M, Imai E (1999) Cytokines and glomerulosclerosis. Nephrol Dial Transplant 14 Suppl 1, 30–32

    Article  PubMed  CAS  Google Scholar 

  • Kashtan CE (1998) Alport syndrome and thin glomerular basement membrane disease. J Am Soc Nephrol 9, 1736–1750

    PubMed  CAS  Google Scholar 

  • Kashtan CE, (2002) Animal models of Alport Syndrome. Nephrol Dial Transplant 17, 1359–1361

    Article  PubMed  Google Scholar 

  • Kim JY, Suh KS (1995) Light microscopic and electron microscopic features of cyclosporine nephrotoxicity in rats. J Korean Med Sci 10, 352–359

    PubMed  CAS  Google Scholar 

  • Kleinman JG, Worcester EM, Beshensky AM, Sheridan AM, Bonventre JV, et al. (1995) Upregulation of osteopontin expression by ischemia in rat kidney. Ann N Y Acad Sci 760, 321–323

    PubMed  CAS  Google Scholar 

  • Klipper-Aurbach Y, Wasserman M, Braunspiegel-Weintrob N, Borstein D, Peleg S, et al. (1995) Mathematical formulae for the prediction of the residual beta cell function during the first two years of disease in children and adolescents with insulin-dependent diabetes mellitus. Med Hypotheses 45, 486–490

    Article  PubMed  CAS  Google Scholar 

  • Lees GE, Helman RG, Kashtan CE, Michael AF, Homco LD, et al. (1999) New form of X-linked dominant hereditary nephritis in dogs. Am J Vet Res 60, 373–383

    PubMed  CAS  Google Scholar 

  • Matsuda A, Itoh Y, Koshikawa N, Akizawa T, Yana I, et al. (2003) Clusterin, an abundant serum factor, is a possible negative regulator of MT6-MMP/MMP-25 produced by neutrophils. J Biol Chem 278, 36350–36357

    Article  PubMed  CAS  Google Scholar 

  • Murphy BF, Kirszbaum L, Walker ID, D’Apice AJ (1988) SP-40,40, a newly identified normal human serum protein found in the SC5b-9 complex of complement and in the immune deposits in glomerulonephritis. J Clin Invest 81, 1858–1864

    Article  PubMed  CAS  Google Scholar 

  • Nakanishi K, Yoskikawa N, Iijima K, Nakamura H (1996) Expression of type IV collagen α3 and α4 chain mRNA in X-linked Alport syndrome. J Am Soc Nephrol 7, 938–945

    PubMed  CAS  Google Scholar 

  • Noiri E, Dickman K, Miller F, Romanov G, Romanov VI, et al. (1999) Reduced tolerance to acute renal ischemia in mice with a targeted disruption of the osteopontin gene. Kidney Int 56, 74–82

    Article  PubMed  CAS  Google Scholar 

  • Padanilam BJ, Martin DR, Hammerman MR (1996) Insulin-like growth factor I-enhanced renal expression of osteopontin after acute ischemic injury in rats. Endocrinology 137, 2133–2140

    Article  PubMed  CAS  Google Scholar 

  • Pennie WD (2000) Use of cDNA microarrays to probe and understand the toxicological consequences of altered gene expression. Toxicol Lett 112–113, 473–477

    Article  PubMed  Google Scholar 

  • Persy VP, Verhulst A, Ysebaert DK, De Greef KE, De Broe ME (2003) Reduced postischemic macrophage infiltration and interstitial fibrosis in osteopontin knockout mice. Kidney Int 63, 543–553

    Article  PubMed  CAS  Google Scholar 

  • Rao VH, Lees GE, Kashtan CE, Nemori R, Singh RK, et al. (2003) Increased expression of MMP-2, MMP-9 (type IV collagenases/gelatinases), and MT1-MMP in canine X-linked Alport syndrome (XLAS). Kidney Int 63, 1736–1748

    Article  PubMed  CAS  Google Scholar 

  • Rao VH, Lees GE, Kashtan CE, Delimont DC, Singh R, et al. (2005) Dysregulation of renal MMP-3 and MMP-7 in canine X-linked Alport syndrome. Pediatr Nephrol 20, 732–739

    Article  PubMed  Google Scholar 

  • Rheault MN, Kren SM, Thielen BK, Mesa HA, Crosson JT, et al. (2004) J Am Soc Nephrol 15, 1466–1474

    Google Scholar 

  • Rosenberg ME, Girton R, Finkel D, Chmielewski D, Barrie A, et al. (2002) Apolipoprotein J/clusterin prevents a progressive glomerulopathy of aging. Mol Cell Biol 22, 1893–1902

    Article  PubMed  CAS  Google Scholar 

  • Sampson NS, Ryan ST, Enke DA, Cosgrove D, Koteliansky V, et al. (2001) Global gene expression analysis reveals a role for the alpha 1 integrin in renal pathogenesis. J Biol Chem 276, 34182–34188

    Article  PubMed  CAS  Google Scholar 

  • Saunders JR, Aminian A, McRae JL, O’Farrell KA, Adam WR, et al. (1994) Clusterin depletion enhances immune glomerular injury in the isolated perfused kidney. Kidney Int 45, 817–827

    PubMed  CAS  Google Scholar 

  • Schnaper HW, Kopp JB, Poncelet AC, Hubchak SC, Stetler-Stevenson WG, et al. (1996) Increased expression of extracellular matrix proteins and decreased expression of matrix proteases after serial passage of glomerular mesangial cells. J Cell Sci 109, 2521–2528

    PubMed  CAS  Google Scholar 

  • Schwochau GB, Nath KA, Rosenberg ME (1998) Clusterin protects against oxidative stress in vitro through aggregative and nonaggregative properties. Kidney Int 53, 1647–1653

    Article  PubMed  CAS  Google Scholar 

  • Shinoura N, Heffelfinger SC, Miller M, Shamraj OI, Miura NH, et al. (1994) RNA expression of complement regulatory proteins in human brain tumors. Cancer Lett 86, 143–149

    Article  PubMed  CAS  Google Scholar 

  • Thorner PS, Zheng K, Kalluri R, Jacobs R, Hudson BG (1996) Coordinate gene expression of the α3, α4, and α5 chains of collagen type IV: evidence from a canine model of X-linked neprhitis with a COL4A5 mutation. J Biol Chem 271, 13821–13828

    Article  PubMed  CAS  Google Scholar 

  • Uchio K, Manabe N, Tamura K, Miyamoto M, Yamaguchi M, et al. (2000) Decreased matrix metalloproteinase activity in the kidneys of hereditary nephritic mice (ICGN strain). Nephron 86, 145–151

    Article  PubMed  CAS  Google Scholar 

  • Vogel KG, Paulsson M, Heinegard D (1984) Specific inhibition of type I and type II collagen fibrillogenesis by the small proteoglycan of tendon. Biochem J 223, 587–597

    PubMed  CAS  Google Scholar 

  • Weber IT, Harrison RW, Iozzo RV (1996) Model structure of decorin and implications for collagen fibrillogenesis. J Biol Chem 271, 31767–31770

    Article  PubMed  CAS  Google Scholar 

  • Winnemoller M, Schmidt G, Kresse H (1991) Influence of decorin on fibroblast adhesion to fibronectin. Eur J Cell Biol 45, 10–17

    Google Scholar 

  • Yamada Y, Ichihara S, Izawa H, Tanaka M, Yokota M (2001) Association of a G994 → T (Val279 → Phe) polymorphism of the plasma platelet-activating factor acetylhydrolase gene with myocardial damage in Japanese patients with nonfamilial hypertrophic cardiomyopathy. J Hum Genet 46: 436–441

    Article  PubMed  CAS  Google Scholar 

  • Zheng K, Thorner PS, Marrano P, Beumal R, McInnes R (1994) Canine X chromosome-linked hereditary nephritis: a genetic model for human X-linked hereditary nephritis resulting from a single base mutation in the gene encoding the alpha 5 chain of collagen type IV. Proc Natl Acad Sci USA 91, 3989–3993

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the College of Veterinary Medicine Signature Programs Enhancement Initiative and the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith E. Murphy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greer, K.A., Higgins, M.A., Cox, M.L. et al. Gene expression analysis in a canine model of X-linked Alport syndrome. Mamm Genome 17, 976–990 (2006). https://doi.org/10.1007/s00335-005-0179-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-005-0179-8

Keywords

Navigation