Skip to main content

Advertisement

Log in

Chromosome 2 locus Nidd5 has a potent effect on adiposity in the TSOD mouse

  • Original Contributions
  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

We previously reported a quantitative trait locus for body weight, non-insulin-dependent diabetes 5 (Nidd5), on Chromosome 2 in the TSOD (Tsumura, Suzuki, Obese Diabetes) mouse, a model of polygenic obese type 2 diabetes. To find the gene responsible for a specific component of the pathogenesis, we used a marker-assisted selection protocol to produce congenic strains. These mice are designed to carry a control BALB/cA-derived genomic interval and a TSOD background to look for loss of phenotype. One of the strains with the widest congenic interval, D2Mit297-D2Mit304, showed reductions in both body weight and adiposity compared with TSOD mice. The phenotypic analyses of other congenic strains further narrowed the locus in a 9.4-Mb interval between D2Mit433 and D2Mit91, around which numerous loci for body weight and adiposity have been mapped previously. Although the locus showed a relatively modest effect on body weight, it had a major influence on fat mass that explains approximately 60% of the difference in the adipose index between parental TSOD and BALB/cA mice. Furthermore, the congenic strain with a minimal BALB/cA-derived region showed significantly smaller cell sizes of white and brown adipocytes compared with the control littermates. However, the locus did not primarily affect food consumption, general activity, or rectal temperature after cold exposure, although there are clear differences in these traits between the parental strains. The present work physically delineates the major locus for adiposity in the TSOD mouse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bell CG, Walley AJ, Froguel P (2005) The genetics of human obesity. Nat Rev Genet 6: 221–234

    Article  CAS  PubMed  Google Scholar 

  • Bradshaw AD, Graves DC, Motamed K, Sage EH (2003) SPARC-null mice exhibit increased adiposity without significant differences in overall body weight. Proc Natl Acad Sci U S A 100: 6045–6050

    Article  CAS  PubMed  Google Scholar 

  • Brockmann GA, Bevova MR (2002) Using mouse models to dissect the genetics of obesity. Trends Genet 18: 367–376

    Article  CAS  PubMed  Google Scholar 

  • Brown LJ, Koza RA, Everett C, Reitman ML, Marshall L, et al. (2002) Normal thyroid thermogenesis but reduced viability and adiposity in mice lacking the mitochondrial glycerol phosphate dehydrogenase. J Biol Chem 277: 32892–32898

    Article  CAS  PubMed  Google Scholar 

  • Bultman SJ, Michaud EJ, Woychik RP (1992) Molecular characterization of the mouse agouti locus. Cell 7: 1195–1204

    Article  CAS  PubMed  Google Scholar 

  • Carnici P, Kasukawa T, Katayama S, Gough J, Frith MC, et al. (2005) The transcriptional landscape of the mammalian genome. Science 309, 1559–1563

    Article  CAS  Google Scholar 

  • Clément K, Vaisse C, Lahlou N, Cabrol S, Pelloux V, et al. (1998) A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Nature 392: 398–401

    Article  PubMed  Google Scholar 

  • Conarello SL, Li Z, Ronan J, Roy RS, Zhu L, et al. (2003) Mice lacking dipeptidyl peptidase IV are protected against obesity and insulin resistance. Proc Natl Acad Sci USA 100: 6825–6830

    Article  CAS  PubMed  Google Scholar 

  • Corva PM, Horvat S, Medrano JF (2001) Quantitative trait loci affecting growth in high growth (hg) mice. Mamm Genome 12: 284–290

    Article  CAS  PubMed  Google Scholar 

  • DosSantos RA, Alfadda A, Eto K, Kadowaki T, Silva JE (2003) Evidence for a compensated thermogenic defect in transgenic mice lacking the mitochondrial glycerol-3-phosphate dehydrogenase gene. Endocrinology 144: 5469–5479

    Article  CAS  PubMed  Google Scholar 

  • Drucker DJ (2003) Glucagon-like peptides: regulators of cell proliferation, differentiation, and apoptosis. Mol Endocrinol 17: 161–171

    Article  CAS  PubMed  Google Scholar 

  • Estrada-Smith D, Castellani LW, Wong H, Wen P-Z, Chui A, et al. (2004) Dissection of multigenic obesity traits in congenic mouse strains. Mamm Genome 15: 14–22

    Article  CAS  PubMed  Google Scholar 

  • Farooqi IS, Keogh JM, Yeo GSH, Lank EJ, Cheetham T, et al. (2003) Clinical spectrum of obesity and mutations in the melanocortin 4 receptor gene. N Engl J Med 348: 1085–1095

    Article  CAS  PubMed  Google Scholar 

  • Griffiths-Jones S, Moxon S, Marshall M, Khanna A, Eddy SR, et al. (2005) Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids Res 33: D121–D124

    Article  CAS  PubMed  Google Scholar 

  • Hirayama I, Yi Z, Izumi S, Arai I, Suzuki W, et al. (1999) Genetic analysis of obese diabetes in the TSOD mouse. Diabetes 48: 1183–1191

    CAS  PubMed  Google Scholar 

  • Horvat S, Bünger L, Falconer VM, Mackay P, Law A, et al. (2000) Mapping of obesity QTLs in a cross between mouse lines divergently selected on fat content. Mamm Genome 11: 2–7

    Article  CAS  PubMed  Google Scholar 

  • Huszar D, Lynch CA, Fairchild-Huntress V, Dunmore JH, Fang Q, et al. (1997) Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 88: 131–141

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa A, Matsuda Y, Namikawa T (2000) Detection of quantitative trait loci for body weight at 10 weeks from Philippine wild mice. Mamm Genome 11: 824–830

    Article  CAS  PubMed  Google Scholar 

  • Jackson RS, Creemers JWM, Ohagi S, Raffin-Sanson M-L, Sanders L, et al. (1997) Obesity and impaired prohormone processing associated with mutations in the human prohormone convertase 1 gene. Nat Genet 16: 303–306

    Article  CAS  PubMed  Google Scholar 

  • Kopelman PG (2000) Obesity as a medical problem. Nature 404: 635–643

    CAS  PubMed  Google Scholar 

  • Krude H, Biebermann H, Luck W, Horn R, Brabant G, et al. (1998) Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nat Genet 19: 155–157

    Article  CAS  PubMed  Google Scholar 

  • Li JB, Gerdes JM, Haycraft CJ, Fan Y, Teslovich TM, et al. (2004) Comparative genomics identifies a flagellar and basal body proteome that includes the BBS5 human disease gene. Cell 117: 541–552

    Article  CAS  PubMed  Google Scholar 

  • Markel P, Shu P, Ebeling C, Carlson GA, Nagle DL, et al. (1997) Theoretical and empirical issues for marker-assisted breeding of congenic mouse strains. Nat Genet 17: 280–284

    CAS  PubMed  Google Scholar 

  • Mehrabian M, Wen P-Z, Fisler J, Davis RC, Lusis AJ (1998) Genetic loci controlling body fat, lipoprotein metabolism, and insulin levels in a multifactorial mouse model. J Clin Invest 101: 2485–2496

    Article  CAS  PubMed  Google Scholar 

  • Montague CT, Farooqi IS, Whitehead JP, Soos MA, Rau H, et al. (1997) Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature 387: 903–908

    Article  CAS  PubMed  Google Scholar 

  • Naggert JK, Fricker LD, Varlamov O, Nishina PM, Rouille Y, et al. (1995) Hyperproinsulinaemia in obese fat/fat mice associated with a carboxypeptidase E mutation which reduces enzyme activity. Nat Genet 10: 135–142

    CAS  PubMed  Google Scholar 

  • Ollmann MM, Wilson BD, Yang Y-K, Kerns JA, Chen Y, et al. (1997) Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein. Science 278: 135–138

    Article  CAS  PubMed  Google Scholar 

  • Rice T, Chagnon YC, Pérusse L, Borecki IB, Ukkola O, et al. (2002) A genomewide linkage scan for abdominal subcutaneous and visceral fat in black and white families: the HERITAGE Family Study. Diabetes 51: 848–855

    CAS  PubMed  Google Scholar 

  • Stoehr JP, Byers JE, Clee SM, Lan H, Boronenkov IV, et al. (2004) Identification of major quantitative trait loci controlling body weight variation in ob/ob mice. Diabetes 53: 245–249

    CAS  PubMed  Google Scholar 

  • Suzuki W, Iizuka S, Tabuchi M, Funo S, Yanagisawa T, et al. (1999) A new mouse model of spontaneous diabetes derived from ddY strain. Exp Anim 48: 181–189

    Article  CAS  PubMed  Google Scholar 

  • Tartaglia LA, Dembski M, Weng X, Deng N, Culpepper J, et al. (1995) Identification and expression cloning of a leptin receptor, OB-R. Cell 83: 1263–1271

    Article  CAS  PubMed  Google Scholar 

  • Taylor BA, Phillips SJ (1997) Obesity QTLs on mouse chromosomes 2 and 17. Genomics 43: 249–257

    Article  CAS  PubMed  Google Scholar 

  • Wakeland E, Morel L, Achey K, Yui M, Longmate J (1997) Speed congenics: a classic technique in the fast lane (relatively speaking). Immunol Today 18: 472–477

    Article  CAS  PubMed  Google Scholar 

  • Young T-L, Penney L, Woods MO, Parfrey PS, Green JS, et al. (1999) A fifth locus for Bardet-Biedl syndrome maps to chromosome 2q31. Am J Hum Genet 64: 900–904

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, et al. (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372: 425–432

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank to Drs. W. Suzuki and I. Arai for supplying the TSOD mice, and A. Tsunoda, T. Ishizaka, H. Takemura, K. Kubota, M. Hosoi, H. Yokota-Hashimoto, S. Zhao, T. Nara, and N. Uchida for genotyping, phenotyping, and the colony maintenance of mice. This work was supported by grants-in-aid for scientific research and the 21st Century Center of Excellence Program from the Ministry of Education, Culture, Sports, Science, and Technology of Japan, and in part by grants from Daiwa Securities Health Foundation, Novo Nordisk Insulin Study Award, and Astellas Foundation for Research on Metabolic Disorders (to T. Izumi).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuro Izumi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mizutani, S., Gomi, H., Hirayama, I. et al. Chromosome 2 locus Nidd5 has a potent effect on adiposity in the TSOD mouse. Mamm Genome 17, 375–384 (2006). https://doi.org/10.1007/s00335-005-0161-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-005-0161-5

Keywords

Navigation