Skip to main content
Log in

Quantitative trait loci for baseline erythroid traits

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

A substantial genetic contribution underlies variation in baseline peripheral blood counts. We performed quantitative trait locus/loci (QTL) analyses to identify chromosome (Chr) regions harboring genes influencing the baseline erythroid parameters in F2 intercrosses between NZW/LacJ, SM/J, and C57BLKS/J inbred mice. We identified multiple significant QTL for red blood cell (RBC) count, hemoglobin (Hgb) and hematocrit (Hct) levels, mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), and mean cell hemoglobin concentration (CHCM). We identified four RBC count QTL: Rbcq1 (Chr 1, peak LOD score at 62 cM,), Rbcq2 (Chr 4, 60 cM), Rbcq3 (Chr 11, 34 cM), and Rbcq4 (Chr 10, 60 cM). Three MCV QTL were identified: Mcvq1 (Chr 7, 30 cM), Mvcq2 (Chr 11, 6 cM), and Mcvq3 (Chr 10, 60 cM). Single significant loci for Hgb (Hgbq1, Chr 16, 32 cM), Hct (Hctq1, Chr 3, 42 cM), and MCH (Mchq1, Chr 10, 60 cM) were identified. The data support the existence of a common RBC/MCH/MCV locus on Chr 10. Two QTL for CHCM (Chcmq1, Chr 2, 48 cM; Chcmq2, Chr 9, 44 cM) and an interaction between Chcmq2 with a locus on Chr 19 were identified. These analyses emphasize the genetic complexity underlying the regulation of erythroid peripheral blood traits in normal populations and suggest that genes not previously recognized as significantly impacting normal erythropoiesis exist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abiola O, Angel JM, Avner P, Bachmanov AA, Belknap JK, et al. (2003) The nature and identification of quantitative trait loci: a community’s view. Nat Rev Genet 4: 911–916

    PubMed  Google Scholar 

  • Bath P, Algert C, Chapman N, Neal B (2004) Association of mean platelet volume with risk of stroke among 3134 individuals with history of cerebrovascular disease. Stroke 35: 622–626

    Article  PubMed  Google Scholar 

  • Cantor AB, Orkin SH (2001) Hematopoietic development: a balancing act. Curr Opin Genet Dev 11: 513–519

    Article  CAS  PubMed  Google Scholar 

  • Cantor AB, Orkin SH (2002) Transcriptional regulation of erythropoiesis: an affair involving multiple partners. Oncogene 21: 3368–3376

    Article  CAS  PubMed  Google Scholar 

  • Cantor AB, Orkin SH (2005) Coregulation of GATA factors by the Friend of GATA (FOG) family of multitype zinc finger proteins. Semin Cell Dev Biol 16: 117–128

    Article  CAS  PubMed  Google Scholar 

  • Castro O, Brambilla DJ, Thorington B, Reindorf CA, Scott RB, et al. (1994) The acute chest syndrome in sickle cell disease: incidence and risk factors. The Cooperative Study of Sickle Cell Disease. Blood 84: 643–649

    CAS  PubMed  Google Scholar 

  • Chen J, Harrison DE (2002) Quantitative trait loci regulating relative lymphocyte proportions in mouse peripheral blood. Blood 99: 561–566

    CAS  PubMed  Google Scholar 

  • Cheung CC, Martin IC, Zenger KR, Donald JA, Thomson PC, et al. (2004) Quantitative trait loci for steady-state platelet count in mice. Mamm Genome 15: 784–797

    Article  CAS  PubMed  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138: 963–971

    CAS  PubMed  Google Scholar 

  • Cordell HJ, Todd JA, Lathrop GM (1998) Mapping multiple linked quantitative trait loci in non-obese diabetic mice using a stepwise regression strategy. Genet Res 71: 51–64

    Article  CAS  PubMed  Google Scholar 

  • de Labry LO, Campion EW, Glynn RJ, Vokonas PS (1990) White blood cell count as a predictor of mortality: results over 18 years from the Normative Aging Study. J Clin Epidemiol 43: 153–157

    PubMed  Google Scholar 

  • Gagnon DR, Zhang TJ, Brand FN, Kannel WB (1994) Hematocrit and the risk of cardiovascular disease—the Framingham study: a 34-year follow-up. Am Heart J 127: 674–682

    Article  CAS  PubMed  Google Scholar 

  • Garner C, Tatu T, Reittie JE, Littlewood T, Darley J, et al. (2000) Genetic influences on F cells and other hematologic variables: a twin heritability study. Blood 95: 342–346

    CAS  PubMed  Google Scholar 

  • Kinney TR, Sleeper LA, Wang WC, Zimmerman RA, Pegelow CH, et al. (1999) Silent cerebral infarcts in sickle cell anemia: a risk factor analysis. The Cooperative Study of Sickle Cell Disease. Pediatrics 103: 640–645

    Article  CAS  PubMed  Google Scholar 

  • Korstanje R, Li R, Howard T, Kelmenson P, Marshall J, et al. (2004) Influence of sex and diet on quantitative trait loci for HDL cholesterol levels in an SM/J by NZB/BlNJ intercross population. J Lipid Res 45: 881–888

    CAS  PubMed  Google Scholar 

  • Lal A, Vichinsky E (2004) The role of fetal hemoglobin-enhancing agents in thalassemia. Semin Hematol 41: 17–22

    Article  CAS  PubMed  Google Scholar 

  • Lander E, Kruglyak L (1995) Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet 11: 241–247

    Article  CAS  PubMed  Google Scholar 

  • Li R, Lyons MA, Wittenburg H, Paigen B, Churchill GA (2005) Combining data from multiple inbred line crosses improves the power and resolution of quantitative trait loci mapping. Genetics 169: 1699–1709

    CAS  PubMed  Google Scholar 

  • Lin JP, O’Donnell CJ, Levy D, Cupples LA (2005) Evidence for a gene influencing haematocrit on chromosome 6q23–24: genomewide scan in the Framingham Heart Study. J Med Genet 42: 75–79

    Article  CAS  PubMed  Google Scholar 

  • Lippi G, Manzato F, Franchini M, Guidi G (2002) Relationship between hematocrit, primary hemostasis, and cardiovascular disease in athletes. Am Heart J 144: E14

    Article  PubMed  Google Scholar 

  • Lyons MA, Wittenburg H, Li R, Walsh KA, Leonard MR, et al. (2003) New quantitative trait loci that contribute to cholesterol gallstone formation detected in an intercross of CAST/Ei and 129S1/SvImJ inbred mice. Physiol Genomics 14: 225–239

    CAS  PubMed  Google Scholar 

  • Mahaney MC, Brugnara C, Lease LR, Platt OS (2005) Genetic influences on peripheral blood cell counts: a study in baboons. Blood 106: 1210–1214

    Article  CAS  PubMed  Google Scholar 

  • Martin JF, Bath PM, Burr ML (1991) Influence of platelet size on outcome after myocardial infarction. Lancet 338: 1409–1411

    CAS  PubMed  Google Scholar 

  • Martin JF, Bath PM, Burr ML (1992) Mean platelet volume and myocardial infarction. Lancet 339: 1000–1001

    Article  CAS  PubMed  Google Scholar 

  • Miller ST, Sleeper LA, Pegelow CH, Enos LE, Wang WC, et al. (2000) Prediction of adverse outcomes in children with sickle cell disease. New Engl J Med 342: 83–89

    CAS  PubMed  Google Scholar 

  • Ohene-Frempong K, Weiner SJ, Sleeper LA, Miller ST, Embury S, et al. (1998) Cerebrovascular accidents in sickle cell disease: Rates and risk factors. Blood 91: 288–294

    CAS  PubMed  Google Scholar 

  • Orkin SH (2000) Diversification of haematopoietic stem cells to specific lineages. Nat Rev Genet 1: 57–64

    Article  CAS  PubMed  Google Scholar 

  • Orkin SH, Zon LI (2002) Hematopoiesis and stem cells: plasticity versus developmental heterogeneity. Nat Immunol 3: 323–328

    Article  CAS  PubMed  Google Scholar 

  • Orkin SH, Porcher C, Fujiwara Y, Visvader J, Wang LC (1999) Intersections between blood cell development and leukemia genes. Cancer Res 59: 1784S–1787S

    CAS  PubMed  Google Scholar 

  • Paigen K (2002) Understanding the human condition: experimental strategies in mammalian genetics. ILAR J 43: 123–135

    CAS  PubMed  Google Scholar 

  • Peters LL, Barker JE (2001) Spontaneous and targeted mutations in erythrocyte membrane skeleton genes: mouse models of hereditary spherocytosis. In: Hematopoiesis A Developmental Approach, LI Zon (ed). (New York: Oxford University Press), pp 582–608

    Google Scholar 

  • Peters LL, Barker JE (2005) Hematology, clotting, and thrombosis. MPD:62, Mouse Phenome Database web site at http://www.jax.org/phenome (The Jackson Laboratory, Bar Harbor, ME)

  • Peters LL, Swearingen RA, Andersen SG, Gwynn B, Lambert AJ, et al. (2004) Identification of quantitative trait loci that modify the severity of hereditary spherocytosis in wan, a new mouse model of band-3 deficiency. Blood 103: 3233–3240

    Article  CAS  PubMed  Google Scholar 

  • Peters LL, Zhang W, Lambert AJ, Brugnara C, Churchill GA, et al. (2005) Quantitative trait loci for baseline white blood cell count, platelet count, and mean platelet volume. Mamm Genome 16: 749–763

    Article  PubMed  Google Scholar 

  • Platt OS, Falcone JF, Lux SE (1989) A 12 kD tryptic peptide of ankyrin retains spectrin binding capacity. Blood 74: 104a

    Google Scholar 

  • Platt OS, Brambilla DJ, Rosse WF, Milner PF, Castro O, et al. (1994) Mortality in sickle cell disease. Life expectancy and risk factors for early death. New Engl J Med 330: 1639–1644

    CAS  PubMed  Google Scholar 

  • Sen S, Churchill GA (2001) A statistical framework for quantitative trait mapping. Genetics 159: 371–387

    CAS  PubMed  Google Scholar 

  • Sokal RR, Rohlf FJ (1981) Biometry, 2nd edn. (San Francisco: WH Freeman)

    Google Scholar 

  • Sugiyama F, Churchill GA, Higgins DC, Johns C, Makaritsis KP, et al. (2001) Concordance of murine quantitative trait loci for salt-induced hypertension with rat and human loci. Genomics 71: 70–77

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Paigen B (2005a) Genetics of variation in HDL cholesterol in humans and mice. Circ Res 96: 27–42

    Article  CAS  Google Scholar 

  • Wang X, Paigen B (2005b) Genome-wide search for new genes controlling plasma lipid concentrations in mice and humans. Curr Opin Lipidol 16: 127–137

    Article  CAS  Google Scholar 

  • Wang X, Korstanje R, Higgins D, Paigen B (2004) Haplotype analysis in multiple crosses to identify a QTL gene. Genome Res 14: 1767–1772

    CAS  PubMed  Google Scholar 

  • Wannamethee G, Perry IJ, Shaper AG (1994) Haematocrit, hypertension and risk of stroke. J Intern Med 235: 163–168

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Drs. Beverly Paigen and David Harrison for critical review of the manuscript. This work was supported by National Institutes of Health grants HL68922 (OSP) and HL64885 and HL66611 (LLP), and The National Cancer Institute CA34196 (The Jackson Laboratory).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luanne L. Peters.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peters, L.L., Lambert, A.J., Zhang, W. et al. Quantitative trait loci for baseline erythroid traits. Mamm Genome 17, 298–309 (2006). https://doi.org/10.1007/s00335-005-0147-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-005-0147-3

Keywords

Navigation