Skip to main content

Advertisement

Log in

Earliest changes in the left ventricular transcriptome post-myocardial infarction

  • Original Contributions
  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

We report a genome-wide survey of early responses of the mouse heart transcriptome to acute myocardial infarction (AMI). For three regions of the left ventricle (LV), namely, ischemic/infarcted tissue (IF), the surviving LV free wall (FW), and the interventricular septum (IVS), 36,899 transcripts were assayed at six time points from 15 min to 48 h post-AMI in both AMI and sham surgery mice. For each transcript, temporal expression patterns were systematically compared between AMI and sham groups, which identified 515 AMI-responsive genes in IF tissue, 35 in the FW, 7 in the IVS, with three genes induced in all three regions. Using the literature, we assigned functional annotations to all 519 nonredundant AMI-induced genes and present two testable models for central signaling pathways induced early post-AMI. First, the early induction of 15 genes involved in assembly and activation of the activator protein-1 (AP-1) family of transcription factors implicates AP-1 as a dominant regulator of earliest post-ischemic molecular events. Second, dramatic increases in transcripts for arginase 1 (ARG1), the enzymes of polyamine biosynthesis, and protein inhibitor of nitric oxide synthase (NOS) activity indicate that NO production may be regulated, in part, by inhibition of NOS and coordinate depletion of the NOS substrate, L-arginine. ARG1 was the single-most highly induced transcript in the database (121-fold in IF region) and its induction in heart has not been previously reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AMI:

acute myocardial infarction

AP-1:

activator protein 1

ARG1:

L-arginase 1

ATF3:

activating transcription factor 3

AZ:

antizyme inhibitor of ornithine decarboxylase

AZI:

antizyme inhibitor releases ornithine decarboxylase from antizyme inhibition

BNP:

brain natriuretic peptide

CTGF:

connective tissue growth factor

ERK:

extracellular signal regulated kinases

FW:

left ventricular free wall

HO-1:

heme oxygenase-1

IF:

infarct

IVS:

interventricular septum

LV:

left ventricle

MAPK:

mitogen activated protein kinase

MCIP1:

modulatory calcineurin-interacting proteins

MLP:

muscle LIM protein

NO:

nitric oxide

NOS:

nitric oxide synthase

NFAT:

nuclear factor of activated t cells

ODC:

ornithine decarboxylase

PIN:

protein inhibitor of the NOS isozymes

RT-PCR:

real time PCR

SPDS:

spermidine synthase

SSAT:

spermidine/spermine N-acetyltransferase

SSAT:

spermidine/spermine N-acetyltransferase other gene names, see Supplementary Tables 1, 2, and 3.

References

  • Akiyama K, Akopian G, Jinadasa P, Gluckman TL, Terhakopian A, et al. (1997) Myocardial infarction and regulatory myosin light chain. J Mol Cell Cardiol 29:2641–2652

    Article  PubMed  CAS  Google Scholar 

  • American Heart Association (AHA) (2003) Heart Disease and Stroke Statistics — 2004 Update (Dallas, TX: American Heart Association)

  • Arstall MA, Sawyer DB, Fukazawa R, Kelly RA (1999) Cytokine-mediated apoptosis in cardiac myocytes: the role of inducible nitric oxide synthase induction and peroxynitrite generation. Circ Res 85:829–840

    PubMed  CAS  Google Scholar 

  • Barouch LA, Harrison RW, Skaf MW, Rosas GO, Cappola TP, et al. (2002) Nitric oxide regulates the heart by spatial confinement of nitric oxide synthase isoforms. Nature 416:337–339

    PubMed  CAS  Google Scholar 

  • Barrans JD, Allen PD, Stamatiou D, Dzau VJ, Liew CC (2002) Global gene expression profiling of end-stage dilated cardiomyopathy using a human cardiovascular-based cDNA microarray. Am J Pathol 160:2035–2043

    PubMed  CAS  Google Scholar 

  • Bauer PM, Fukuto JM, Buga GM, Pegg AE, Ignarro LJ (1999) Nitric oxide inhibits ornithine decarboxylase by S-nitrosylation. Biochem Biophys Res Commun 262:355–358

    Article  PubMed  CAS  Google Scholar 

  • Bauer PM, Buga GM, Fukuto JM, Pegg AE, Ignarro LJ (2001) Nitric oxide inhibits ornithine decarboxylase via S-nitrosylation of cysteine 360 in the active site of the enzyme. J Biol Chem 276:34458–34464

    Article  PubMed  CAS  Google Scholar 

  • Biggs TE, Cooke SJ, Barton CH, Harris MP, Saksela K, Mann DA (1999) Induction of activator protein 1 (AP-1) in macrophages by human immunodeficiency virus type-1 NEF is a cell-type-specific response that requires both hck and MAPK signaling events. J Mol Biol 290:21–35

    Article  PubMed  CAS  Google Scholar 

  • Bolstad BM, Irizarry RA, Astrand M, Speed TP (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19:185–193

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Bueno OF, De Windt LJ, Lim HW, Tymitz KM, Witt SA, et al. (2001) The dual-specificity phosphatase MKP-1 limits the cardiac hypertrophic response in vitro and in vivo. Circ Res 88:88–96

    PubMed  CAS  Google Scholar 

  • Chattopadhyay MK, Tabor CW, Tabor H (2003) Polyamines protect Escherichia coli cells from the toxic effect of oxygen. Proc Natl Acad Sci USA 100:2261–2265

    Article  PubMed  CAS  Google Scholar 

  • Chugh SS, Whitesel S, Turner M, Roberts CT Jr, Nagalla SR (2003) Genetic basis for chamber-specific ventricular phenotypes in the rat infarct model. Cardiovasc Res 57:477–485

    Article  PubMed  CAS  Google Scholar 

  • Corraliza IM, Campo ML, Soler G, Modolell M (1994) Determination of arginase activity in macrophages: a micromethod. J Immunol Methods 174:231–235

    Article  PubMed  CAS  Google Scholar 

  • De Keulenaer GW, Wang Y, Feng Y, Muangman S, Yamamoto K, et al. (2002) Identification of IEX-1 as a biomechanically controlled nuclear factor-kappaB target gene that inhibits cardiomyocyte hypertrophy. Circ Res 90:690–696

    Article  PubMed  Google Scholar 

  • Depre C, Tomlinson JE, Kudej RK, Gaussin V, Thompson E, et al. (2001) Gene program for cardiac cell survival induced by transient ischemia in conscious pigs. Proc Natl Acad Sci USA 98:9336–9341

    Article  PubMed  CAS  Google Scholar 

  • Dunsmuir P, Bond D, Lee K, Gidoni D, Townsend J (1987) The expression of introduced genes in regenerated plants. In: Plant Molecular Biology Manual, S. Gelvin and R. Schilperoort, eds. (Dordrecht: Kluwer Academic Publishers), pp 45–59

    Google Scholar 

  • Eriksson M, Leppa S (2002) Mitogen-activated protein kinases and activator protein 1 are required for proliferation and cardiomyocyte differentiation of P19 embryonal carcinoma cells. J Biol Chem 277:15992–16001

    Article  PubMed  CAS  Google Scholar 

  • Frantz S, Fraccarollo D, Wagner H, Behr TM, Jung P, et al. (2003) Sustained activation of nuclear factor kappa B and activator protein 1 in chronic heart failure. Cardiovasc Res 57:749–756

    Article  PubMed  CAS  Google Scholar 

  • Frey N, Olson EN (2003) Cardiac hypertrophy: the good, the bad, and the ugly. Annu Rev Physiol 65:45–79

    Article  PubMed  CAS  Google Scholar 

  • Goetze JP (2004) ProBNP-derived peptides in cardiac disease. Scand J Clin Lab Invest 64:497–510

    Article  PubMed  CAS  Google Scholar 

  • Hein TW, Zhang C, Wang W, Chang CI, Thengchaisri N, et al. (2003) Ischemia–reperfusion selectively impairs nitric oxide-mediated dilation in coronary arterioles: counteracting role of arginase. FASEB J 17:2328–2330

    PubMed  CAS  Google Scholar 

  • Hemmens B, Woschitz S, Pitters E, Klosch B, Volker C, et al. (1998) The protein inhibitor of neuronal nitric oxide synthase (PIN): characterization of its action on pure nitric oxide synthases. FEBS Lett 430:397–400

    Article  PubMed  CAS  Google Scholar 

  • Hilfiker-Kleiner D, Kaminski K, Kaminska A, Fuchs M, Klein G, et al. (2004) Regulation of proangiogenic factor CCN1 in cardiac muscle: impact of ischemia, pressure overload, and neurohumoral activation. Circulation 109:2227–2233

    Article  PubMed  CAS  Google Scholar 

  • Holzberg D, Knight CG, Dittrich-Breiholz O, Schneider H, Dorrie A, et al. (2003) Disruption of the c-JUN-JNK complex by a cell-permeable peptide containing the c-JUN delta domain induces apoptosis and affects a distinct set of interleukin-1-induced inflammatory genes. J Biol Chem 278:40213–40223

    Article  PubMed  CAS  Google Scholar 

  • Hwang JJ, Allen PD, Tseng GC, Lam CW, Fananapazir L, et al. (2002) Microarray gene expression profiles in dilated and hypertrophic cardiomyopathic end-stage heart failure. Physiol Genomics 10:31–44

    PubMed  CAS  Google Scholar 

  • Jochum W, Passegue E, Wagner EF (2001) AP-1 in mouse development and tumorigenesis. Oncogene 20:2401–2412

    Article  PubMed  CAS  Google Scholar 

  • Kane LP, Mollenauer MN, Xu Z, Turck CW, Weiss A (2002) Akt-dependent phosphorylation specifically regulates Cot induction of NF-kappa B-dependent transcription. Mol Cell Biol 22:5962–5974

    Article  PubMed  CAS  Google Scholar 

  • Kapoun AM, Liang F, O’Young G, Damm DL, Quon D, et al. (2004) B-type natriuretic peptide exerts broad functional opposition to transforming growth factor-beta in primary human cardiac fibroblasts: fibrosis, myofibroblast conversion, proliferation, and inflammation. Circ Res 94:453–461

    Article  PubMed  CAS  Google Scholar 

  • Kempf T, Wollert KC (2004) Nitric oxide and the enigma of cardiac hypertrophy. Bioessays 26:608–615

    Article  PubMed  CAS  Google Scholar 

  • Kishimoto I, Rossi K, Garbers DL (2001) A genetic model provides evidence that the receptor for atrial natriuretic peptide (guanylyl cyclase-A) inhibits cardiac ventricular myocyte hypertrophy. Proc Natl Acad Sci USA 98:2703–2706

    Article  PubMed  CAS  Google Scholar 

  • Kitakaze M, Asakura M, Sakata Y, Asanuma H, Sanada S, et al. (2001) cDNA array hybridization reveals cardiac gene expression in acute ischemic murine hearts. Cardiovasc Drugs Ther 15:125–130

    Article  PubMed  CAS  Google Scholar 

  • Klee CB, Ren H, Wang X (1998) Regulation of the calmodulin-stimulated protein phosphatase, calcineurin. J Biol Chem 273:13367–13370

    Article  PubMed  CAS  Google Scholar 

  • Kumar NV, Bernstein LR (2001) Ten ERK-related proteins in three distinct classes associate with AP-1 proteins and/or AP-1 DNA. J Biol Chem 276:32362–32372

    Article  PubMed  CAS  Google Scholar 

  • Laderoute KR, Calaoagan JM, Knapp M, Johnson RS (2004) Glucose utilization is essential for hypoxia-inducible factor 1 alpha-dependent phosphorylation of c-Jun. Mol Cell Biol 24:4128–4137

    Article  PubMed  CAS  Google Scholar 

  • Laframboise WA, Bombach KL, Dhir RJ, Muha N, Cullen RF, et al. (2005) Molecular dynamics of the compensatory response to myocardial infarct. J Mol Cell Cardiol 38:103–117

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Ryu H, Ferrante RJ, Morris SM Jr, Ratan RR (2003) Translational control of inducible nitric oxide synthase expression by arginine can explain the arginine paradox. Proc Natl Acad Sci USA 100:4843–4848

    Article  PubMed  CAS  Google Scholar 

  • Leinwand LA (2001) Calcineurin inhibition and cardiac hypertrophy: A matter of balance. Proc Natl Acad Sci USA 98:2947–2949

    Article  PubMed  CAS  Google Scholar 

  • Lyn D, Liu X, Bennett NA, Emmett NL (2000) Gene expression profile in mouse myocardium after ischemia. Physiol Genomics 2:93–100

    PubMed  CAS  Google Scholar 

  • Ma Q, Baldwin KT, Renzelli AJ, McDaniel A, Dong L (2001) TCDD-inducible poly(ADP-ribose) polymerase: a novel response to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Biochem Biophys Res Commun 289:499–506

    Article  PubMed  CAS  Google Scholar 

  • Massion PB, Feron O, Dessy C, Balligand JL (2003) Nitric oxide and cardiac function: ten years after, and continuing. Circ Res 93:388–398

    Article  PubMed  CAS  Google Scholar 

  • Matsui Y, Sadoshima J (2004) Rapid upregulation of CTGF in cardiac myocytes by hypertrophic stimuli: implication for cardiac fibrosis and hypertrophy. J Mol Cell Cardiol 37:477–481

    Article  PubMed  CAS  Google Scholar 

  • Matsushita K, Umezawa A, Iwanaga S, Oda T, Okita H, et al. (1999) The EAT/mcl-1 gene, an inhibitor of apoptosis, is up-regulated in the early stage of acute myocardial infarction. Biochim Biophys Acta 1472:471–478

    PubMed  CAS  Google Scholar 

  • Mirotsou M, Watanabe CM, Schultz PG, Pratt RE, Dzau VJ (2003) Elucidating the molecular mechanism of cardiac remodeling using a comparative genomic approach. Physiol Genomics 15:115–126

    PubMed  CAS  Google Scholar 

  • Molkentin JD, Dorn IG 2nd (2001) Cytoplasmic signaling pathways that regulate cardiac hypertrophy. Annu Rev Physiol 63:391–426

    Article  PubMed  CAS  Google Scholar 

  • Molkentin JD, Lu JR, Antos CL, Markham B, Richardson J, et al. (1998) A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 93:215–228

    Article  PubMed  CAS  Google Scholar 

  • Morris SM Jr (2004) Recent advances in arginine metabolism. Curr Opin Clin Nutr Metab Care 7:45–51

    PubMed  CAS  Google Scholar 

  • Muegge K, Williams TM, Kant J, Karin M, Chiu R, et al. (1989) Interleukin-1 costimulatory activity on the interleukin-2 promoter via AP-1. Science 246:249–251

    PubMed  CAS  Google Scholar 

  • Mungrue IN, Gros R, You X, Pirani A, Azad A, et al. (2002) Cardiomyocyte overexpression of iNOS in mice results in peroxynitrite generation, heart block, and sudden death. J Clin Invest 109:735–743

    Article  PubMed  CAS  Google Scholar 

  • Nilsson J, Grahn B, Heby O (2000) Antizyme inhibitor is rapidly induced in growth-stimulated mouse fibroblasts and releases ornithine decarboxylase from antizyme suppression. Biochem J 346 Pt 3:699–704

    Article  PubMed  CAS  Google Scholar 

  • Nossuli TO, Lakshminarayanan V, Baumgarten G, Taffet GE, Ballantyne CM, et al. (2000) A chronic mouse model of myocardial ischemia-reperfusion: essential in cytokine studies. Am J Physiol Heart Circ Physiol 278:H1049–1055

    PubMed  CAS  Google Scholar 

  • Omura T, Yoshiyama M, Yoshida K, Nakamura Y, Kim S, et al. (2002) Dominant negative mutant of c-Jun inhibits cardiomyocyte hypertrophy induced by endothelin 1 and phenylephrine. Hypertension 39:81–86

    Article  PubMed  CAS  Google Scholar 

  • Onody A, Zvara A, Hackler L Jr, Vigh L, Ferdinandy P, et al. (2003) Effect of classic preconditioning on the gene expression pattern of rat hearts: a DNA microarray study. FEBS Lett 536:35–40

    Article  PubMed  CAS  Google Scholar 

  • Patten RD, Aronovitz MJ, Deras-Mejia L, Pandian NG, Hanak GG, et al. (1998) Ventricular remodeling in a mouse model of myocardial infarction. Am J Physiol 274:H1812–1820

    PubMed  CAS  Google Scholar 

  • Purcell NH, Darwis D, Bueno OF, Muller JM, Schule R, et al. (2004) Extracellular signal-regulated kinase 2 interacts with and is negatively regulated by the LIM-only protein FHL2 in cardiomyocytes. Mol Cell Biol 24:1081–1095

    Article  PubMed  CAS  Google Scholar 

  • Raser JM, O’Shea EK (2004) Control of stochasticity in eukaryotic gene expression. Science 304:1811–1814

    Article  PubMed  CAS  Google Scholar 

  • Rothermel BA, McKinsey TA, Vega RB, Nicol RL, Mammen P, et al. (2001) Myocyte-enriched calcineurin-interacting protein, MCIP1, inhibits cardiac hypertrophy in vivo. Proc Natl Acad Sci USA 98:3328–3333

    Article  PubMed  CAS  Google Scholar 

  • Rothermel BA, Vega RB, Williams RS (2003) The role of modulatory calcineurin-interacting proteins in calcineurin signaling. Trends Cardiovasc Med 13:15–21

    Article  PubMed  CAS  Google Scholar 

  • Schneider A, Fischer A, Weber D, von Ahsen O, Scheek S, et al. (2004) Restriction-mediated differential display (RMDD) identifies pip92 as a pro-apoptotic gene product induced during focal cerebral ischemia. J Cereb Blood Flow Metab 24:224–236

    Article  PubMed  CAS  Google Scholar 

  • Sears CE, Ashley EA, Casadei B (2004) Nitric oxide control of cardiac function: is neuronal nitric oxide synthase a key component? Philos Trans R Soc Lond B Biol Sci 359:1021–1044

    Article  PubMed  CAS  Google Scholar 

  • Sehl PD, Tai JT, Hillan KJ, Brown LA, Goddard A, et al. (2000) Application of cDNA microarrays in determining molecular phenotype in cardiac growth, development, and response to injury. Circulation 101:1990–1999

    PubMed  CAS  Google Scholar 

  • Shaulian E, Karin M (2001) AP-1 in cell proliferation and survival. Oncogene 20:2390–2400

    Article  PubMed  CAS  Google Scholar 

  • Shaulian E, Karin M (2002) AP-1 as a regulator of cell life and death. Nat Cell Biol 4:E131–136

    Article  PubMed  CAS  Google Scholar 

  • Shimizu N, Yoshiyama M, Omura T, Hanatani A, Kim S, et al. (1998) Activation of mitogen-activated protein kinases and activator protein-1 in myocardial infarction in rats. Cardiovasc Res 38:116–124

    Article  PubMed  CAS  Google Scholar 

  • Simkhovich BZ, Marjoram P, Poizat C, Kedes L, Kloner RA (2003) Brief episode of ischemia activates protective genetic program in rat heart: a gene chip study. Cardiovasc Res 59:450–459

    Article  PubMed  CAS  Google Scholar 

  • Siwik DA, Colucci WS (2004) Regulation of matrix metalloproteinases by cytokines and reactive oxygen/nitrogen species in the myocardium. Heart Fail Rev 9:43–51

    Article  PubMed  CAS  Google Scholar 

  • Stanton LW, Garrard LJ, Damm D, Garrick BL, Lam A, et al. (2000) Altered patterns of gene expression in response to myocardial infarction [see comments]. Circ Res 86:939–945

    PubMed  CAS  Google Scholar 

  • Steenman M, Chen YW, Le Cunff M, Lamirault G, Varro A, et al. (2003) Transcriptomal analysis of failing and nonfailing human hearts. Physiol Genomics 12:97–112

    PubMed  CAS  Google Scholar 

  • Stuehr DJ, Santolini J, Wang ZQ, Wei CC, Adak S (2004) Update on mechanism and catalytic regulation in the NO synthases. J Biol Chem 279:36167–36170

    Article  PubMed  CAS  Google Scholar 

  • Tarnavski O, McMullen JR, Schinke M, Nie Q, Kong S, et al. (2004) Mouse cardiac surgery: comprehensive techniques for the generation of mouse models of human diseases and their application for genomic studies. Physiol Genomics 16:349–360

    Article  PubMed  CAS  Google Scholar 

  • Tongers J, Fiedler B, Konig D, Kempf T, Klein G, et al. (2004) Heme oxygenase-1 inhibition of MAP kinases, calcineurin/NFAT signaling, and hypertrophy in cardiac myocytes. Cardiovasc Res 63:545–552

    Article  PubMed  CAS  Google Scholar 

  • Vega RB, Rothermel BA, Weinheimer CJ, Kovacs A, Naseem RH, et al. (2003) Dual roles of modulatory calcineurin-interacting protein 1 in cardiac hypertrophy. Proc Natl Acad Sci U S A 100:669–674

    Article  PubMed  CAS  Google Scholar 

  • Wallace HM, Fraser AV, Hughes A (2003) A perspective of polyamine metabolism. Biochem J 376:1–14

    Article  PubMed  CAS  Google Scholar 

  • Weinberg EO, Mirotsou M, Gannon J, Dzau VJ, Lee RT, et al. (2003) Sex dependence and temporal dependence of the left ventricular genomic response to pressure overload. Physiol Genomics 12:113–127

    PubMed  CAS  Google Scholar 

  • Xi L, Taher M, Yin C, Salloum F, Kukreja RC (2004) Cobalt chloride induces delayed cardiac preconditioning in mice through selective activation of HIF-1alpha and AP-1 and iNOS signaling. Am J Physiol Heart Circ Physiol 287:H2369–2375

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto K, Ohki R, Lee RT, Ikeda U, Shimada K (2001) Peroxisome proliferator-activated receptor gamma activators inhibit cardiac hypertrophy in cardiac myocytes. Circulation 104:1670–1675

    PubMed  CAS  Google Scholar 

  • Yang J, Moravec CS, Sussman MA, DiPaola NR, Fu D, et al. (2000) Decreased SLIM1 expression and increased gelsolin expression in failing human hearts measured by high-density oligonucleotide arrays. Circulation 102:3046–3052

    PubMed  CAS  Google Scholar 

  • Yao Z, Zhou G, Wang XS, Brown A, Diener K, Gan H, et al. (1999) A novel human STE20-related protein kinase, HGK, that specifically activates the c-Jun N-terminal kinase signaling pathway. J Biol Chem 274:2118–2125

    Article  PubMed  CAS  Google Scholar 

  • Yasukawa H, Hoshijima M, Gu Y, Nakamura T, et al. (2001) Suppressor of cytokine signaling-3 is a biomechanical stress-inducible gene that suppresses gp130-mediated cardiac myocyte hypertrophy and survival pathways. J Clin Invest 108, 1459–1467

    Article  PubMed  CAS  Google Scholar 

  • Zhao M, Chow A, Powers J, Fajardo G, Bernstein D (2004) Microarray analysis of gene expression after transverse aortic constriction in mice. Physiol Genomics 19:93–105

    Article  PubMed  CAS  Google Scholar 

  • Zingarelli B, Hake PW, O’Connor M, Denenberg A, Wong HR, et al. (2004) Differential regulation of activator protein-1 and heat shock factor-1 in myocardial ischemia and reperfusion injury: role of poly(ADP-ribose) polymerase-1. Am J Physiol Heart Circ Physiol 286:H1408–1415

    Article  PubMed  CAS  Google Scholar 

  • Ziolo MT, Bers DM (2003) The real estate of NOS signaling: location, location, location. Circ Res 92:1279–1281

    Article  PubMed  CAS  Google Scholar 

  • Zubakov D, Hoheisel JD, Kluxen FW, Brandle M, Ehring T, et al. (2003) Late ischemic preconditioning of the myocardium alters the expression of genes involved in inflammatory response. FEBS Lett 547:51–55

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the National Institutes of Health [NCRR P20 RR15640 (COBRE) and NIH 1 R15 HL71239-01]. The authors thank Drs. Stephen Bieber and Tzulip Phang for consultation on statistical analyses. They also thank Todd Woessner of the Microarray Core Facility (University of Colorado Health Sciences Center at Denver) for GeneChip processing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark M. Stayton.

Additional information

Mark H. Harpster and Somnath Bandyopadhyay contributed equally to this work.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harpster, M.H., Bandyopadhyay, S., Thomas, D.P. et al. Earliest changes in the left ventricular transcriptome post-myocardial infarction. Mamm Genome 17, 701–715 (2006). https://doi.org/10.1007/s00335-005-0120-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-005-0120-1

Keywords

Navigation