Skip to main content
Log in

A catalog of nonsynonymous polymorphism on mouse Chromosome 16

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

Numerous phenotypic traits differ among inbred mice, and the genetic diversity of inbred strains has been exploited in studies of quantitative trait loci (QTL). Sequencing the mouse genome has resulted in improved tools for the study of QTL, but a comprehensive catalog of sequence variants between strains would be of great value in identifying and testing potentially causative alleles. A/J DNA was included in the Celera shotgun sequence of the mouse genome and C57BL/6 DNA was sequenced by an international consortium. We have resequenced A/J and B6 DNA to cover nearly all of the protein-coding portions of mouse Chromosome 16, revealing that there are 106 nonsynonymous substitutions in 74 of the 779 genes on the chromosome. The pattern of substitution is more similar to the spectrum of benign polymorphism in the human population than it is to human disease-causing mutations. In mouse, polymorphic variants tend to be associated with one another on large haplotypes; this pattern also holds true for nonsynonymous polymorphism. However, sufficient fragmentation of haplotypes is present to suggest that only a very-high-resolution haplotype map will enable effective inference of alleles in additional strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abiola O, Angel JM, Avner P, Bachmanov AA, Belknap JK, et al. (2003) The nature and identification of quantitative trait loci: a community’s view. Nat Rev Genet 4: 911–916

    PubMed  Google Scholar 

  • Adams DJ, Dermitzakis ET, Cox T, Smith J, Davies R, et al. (2005) Complex haplotypes, copy number polymorphisms and coding variation in two recently divergent mouse strains. Nat Genet 37: 532–536

    Article  PubMed  CAS  Google Scholar 

  • Baroukh N, Ahituv N, Chang J, Shoukry M, Afzal V, et al. (2005) Comparative genomic analysis reveals a distant liver enhancer upstream of the COUP-TFII gene. Mamm Genome 16: 91–95

    Article  PubMed  CAS  Google Scholar 

  • Belknap JK (2003) Chromosome substitution strains: some quantitative considerations for genome scans and fine mapping. Mamm Genome 14: 723–732

    Article  PubMed  Google Scholar 

  • Blanchette M, Kent WJ, Riemer C, Elnitski L, Smit AF, et al. (2004) Aligning multiple genomic sequences with the threaded blockset aligner. Genome Res 14: 708–715

    PubMed  CAS  Google Scholar 

  • Bogue M (2003) Mouse Phenome Project: understanding human biology through mouse genetics and genomics. J Appl Physiol 95: 1335–1337

    PubMed  CAS  Google Scholar 

  • Churchill GA, Airey DC, Allayee H, Angel JM, Attie AD, et al. (2004) The Collaborative Cross, a community resource for the genetic analysis of complex traits. Nat Genet 36: 1133–1137

    Article  PubMed  CAS  Google Scholar 

  • Dermitzakis ET, Reymond A, Lyle R, Scamuffa N, Ucla C, et al. (2002) Numerous potentially functional but non-genic conserved sequences on human chromosome 21. Nature 420: 578–582

    Article  PubMed  CAS  Google Scholar 

  • Eppig JT, Bult CJ, Kadin JA, Richardson JE, Blake JA, et al. (2005) The Mouse Genome Database (MGD): from genes to mice—a community resource for mouse biology. Nucleic Acids Res 33: D471–475

    PubMed  CAS  Google Scholar 

  • Festing MFW (1979) Inbred Strains in Biomedical Research (Oxford: Oxford University Press)

    Google Scholar 

  • Festing MFW (1996) Origins and characteristics of inbred strains of mice. In: Lyon M, Rastan S, Brown SDM (eds.)Genetic Variations and Strains of the Laboratory Mouse, (Oxford: Oxford University Press), pp 1537–1576

    Google Scholar 

  • Frazer KA, Wade CM, Hinds DA, Patil N, Cox DR,et al. (2004). Segmental phylogenetic relationships of inbred mouse strains revealed by fine-scale analysis of sequence variation across 4.6 mb of mouse genome. Genome Res 14: 1493–1500

    PubMed  CAS  Google Scholar 

  • Gerlai R (2001) Eph receptors and neural plasticity. Nat Rev Neurosci 2: 205–209

    Article  PubMed  CAS  Google Scholar 

  • Gerlai R (2002) EphB and NMDA receptors: components of synaptic plasticity coming together. Trends Neurosci 25: 180–181

    PubMed  Google Scholar 

  • Gill KJ, Boyle AE (2003) Confirmation of quantitative trait loci for cocaine-induced activation in the AcB/BcA series of recombinant congenic strains. Pharmacogenetics 13: 329–338

    Article  PubMed  CAS  Google Scholar 

  • Gill K, Desaulniers N, Desjardins P, Lake K (1998) Alcohol preference in AXB/BXA recombinant inbred mice: gender differences and gender-specific quantitative trait loci. Mamm Genome 9: 929–935

    Article  PubMed  CAS  Google Scholar 

  • Gill K, Boyle A, Lake K, Desaulniers N (2000) Alcohol-induced locomotor activation in C57BL/6J, A/J, and AXB/BXA recombinant inbred mice: strain distribution patterns and quantitative trait loci analysis. Psychopharmacology (Berl) 150: 412–421

    CAS  Google Scholar 

  • Grubb SC, Churchill GA, Bogue MA (2004) A collaborative database of inbred mouse strain characteristics. Bioinformatics 20: 2857–2859

    Article  PubMed  CAS  Google Scholar 

  • Hoogendoorn B, Coleman SL, Guy CA, Smith K, Bowen T, et al. (2003). Functional analysis of human promoter polymorphisms. Hum Mol Genet 12: 2249–2254

    Article  PubMed  CAS  Google Scholar 

  • Korstanje R, Paigen B (2002) From QTL to gene: the harvest begins. Nat Genet 31: 235–236

    Article  PubMed  CAS  Google Scholar 

  • Morse HC (1978) Origins of Inbred Mice. (New York: Academic Press), 719 pp

    Google Scholar 

  • Moses AM, Chiang DY, Pollard DA, Iyer VN, Eisen MB (2004) MONKEY: identifying conserved transcription-factor binding sites in multiple alignments using a binding site-specific evolutionary model. Genome Biol 5: R98

    Article  PubMed  Google Scholar 

  • Mural RJ, Adams MD, Myers EW, Smith HO, Miklos GL, et al. (2002) A comparison of whole-genome shotgun-derived mouse chromosome 16 and the human genome. Science 296: 1661–1671

    Article  PubMed  CAS  Google Scholar 

  • Ng PC, Henikoff S (2003) SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res 31: 3812–3814

    PubMed  CAS  Google Scholar 

  • Pennacchio LA, Baroukh N, Rubin EM (2003) Human-mouse comparative genomics: successes and failures to reveal functional regions of the human genome. Cold Spring Harb Symp Quant Biol 68: 303–309

    Article  PubMed  CAS  Google Scholar 

  • Poulin F, Nobrega MA, Plajzer-Frick I, Holt A, Afzal V, et al. (2005) In vivo characterization of a vertebrate ultraconserved enhancer. Genomics 85: 774–781

    Article  PubMed  CAS  Google Scholar 

  • Ramensky V, Bork P, Sunyaev S (2002) Human non-synonymous SNPs: server and survey. Nucleic Acids Res 30: 3894–3900

    Article  PubMed  CAS  Google Scholar 

  • Roper RJ, McAllister RD, Biggins JE, Michael SD, Min SH, et al. (2003) Aod1 controlling day 3 thymectomy-induced autoimmune ovarian dysgenesis in mice encompasses two linked quantitative trait loci with opposing allelic effects on disease susceptibility. J Immunol 170: 5886–5891

    PubMed  CAS  Google Scholar 

  • Singer JB, Hill AE, Burrage LC, Olszens KR, Song J, et al. (2004) Genetic dissection of complex traits with chromosome substitution strains of mice. Science 304: 445–448

    Article  PubMed  CAS  Google Scholar 

  • Tabakoff B, Bhave SV, Hoffman PL (2003) Selective breeding, quantitative trait locus analysis, and gene arrays identify candidate genes for complex drug-related behaviors. J Neurosci 23: 4491–4498

    PubMed  CAS  Google Scholar 

  • Thomas JW, Touchman JW, Blakesley RW, Bouffard GG, Beckstrom-Sternberg SM, et al. (2003) Comparative analyses of multi-species sequences from targeted genomic regions. Nature 424: 788–793

    Article  PubMed  CAS  Google Scholar 

  • Vitkup D, Sander C, Church GM (2003) The amino-acid mutational spectrum of human genetic disease. Genome Biol 4: R72

    Article  PubMed  Google Scholar 

  • Wade CM, Kulbokas EJ 3rd, Kirby AW, Zody MC, Mullikin JC, et al. (2002) The mosaic structure of variation in the laboratory mouse genome. Nature 420: 574–578

    Article  PubMed  CAS  Google Scholar 

  • Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, et al. (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420: 520–562

    PubMed  CAS  Google Scholar 

  • Wiltshire T, Pletcher MT, Batalov S, Barnes SW, Tarantino LM, et al. (2003) Genome-wide single-nucleotide polymorphism analysis defines haplotype patterns in mouse. Proc Natl Acad Sci U S A 100: 3380–3385

    Article  PubMed  CAS  Google Scholar 

  • Xie X, Lu J, Kulbokas EJ, Golub TR, Mootha V, Let al. (2005) Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals. Nature 434: 338–345

    PubMed  CAS  Google Scholar 

  • Yalcin B, Fullerton J, Miller S, Keays DA, Brady S, et al. (2004) Unexpected complexity in the haplotypes of commonly used inbred strains of laboratory mice. Proc Natl Acad Sci U S A 101: 9734–9739

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Courtney Bartel for assistance in verifying Celera SNPs. The location of A/J reads on Mmu16 was kindly provided by Celera Genomics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark D. Adams.

Additional information

SNP data have been submitted to dbSNP with ssid No. 46531525-46532013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kidd, J.M., Trevarthen, K.C., Tefft, D.L. et al. A catalog of nonsynonymous polymorphism on mouse Chromosome 16. Mamm Genome 16, 925–933 (2005). https://doi.org/10.1007/s00335-005-0085-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-005-0085-0

Keywords

Navigation