Mammalian Genome

, Volume 16, Issue 9, pp 720–730 | Cite as

Quantitative trait loci for hip dysplasia in a crossbreed canine pedigree

  • Rory J. Todhunter
  • Raluca Mateescu
  • George Lust
  • Nancy I. Burton-Wurster
  • Nathan L. Dykes
  • Stuart P. Bliss
  • Alma J. Williams
  • Margaret Vernier-Singer
  • Elizabeth Corey
  • Carlos Harjes
  • Richard L. Quaas
  • Zhiwu Zhang
  • Robert O. Gilbert
  • Dietrich Volkman
  • George Casella
  • Rongling Wu
  • Gregory M. Acland
Article

Abstract

Canine hip dysplasia is a common developmental inherited trait characterized by hip laxity, subluxation or incongruity of the femoral head and acetabulum in affected hips. The inheritance pattern is complex and the mutations contributing to trait expression are unknown. In the study reported here, 240 microsatellite markers distributed in 38 autosomes and the X chromosome were genotyped on 152 dogs from three generations of a crossbred pedigree based on trait-free Greyhound and dysplastic Labrador Retriever founders. Interval mapping was undertaken to map the QTL underlying the quantitative dysplastic traits of maximum passive hip laxity (the distraction index), the dorsolateral subluxation score, and the Norberg angle. Permutation testing was used to derive the chromosome-wide level of significance at p < 0.05 for each QTL. Chromosomes 4, 9, 10, 11 (p < 0.01), 16, 20, 22, 25, 29 (p < 0.01), 30, 35, and 37 harbor putative QTL for one or more traits. Successful detection of QTL was due to the crossbreed pedigree, multiple-trait measurements, control of environmental background, and marked advancement in canine mapping tools.

References

  1. Baronciani D, Atti G, Andiloro F, Bartesaghi A, Gagliardi L, et al. (1997) Screening for developmental dysplasia of the hip: from theory to practice. Collaborative Group DDH Project. Pediatrics 99(2): E5Google Scholar
  2. Beighton P, Cilliers HJ, Ramesar R (1994) Autosomal dominant (Beukes) premature degenerative osteoarthropathy of the hip joint unlinked to COL2A1. Am J Med Genet 53(4): 348–351CrossRefPubMedGoogle Scholar
  3. Bliss S, Todhunter RJ, Quaas R, Casella G, Wu R, et al.(2002) Quantitative genetics of traits associated with hip dysplasia in a canine pedigree constructed by mating dysplastic Labrador Retrievers with unaffected Greyhounds. Am J Vet Res 63(7): 1029–1035PubMedGoogle Scholar
  4. Botstein D, White R, Skolnick M, Davis RW (1980) Construction of a genetic linkage map using restriction fragment length polymorphisms. Am J Hum Genet 32: 314–331PubMedGoogle Scholar
  5. Breen M, Jouquand S, Renier C, Mellersh CS, Hitte C, et al. (2001) Chromosome-specific single-locus FISH probes allow anchorage of an 1800-marker integrated radiation-hybrid/linkage map of the domestic dog genome to all chromosomes. Genome Res 11(10): 1784–1795CrossRefPubMedGoogle Scholar
  6. Breen M, Hitte C, Lorentzen TD, Thomas R, Cadieu E, et al. (2004) An integrated 4249 marker FISH/RH map of the canine genome. BMC Genomics 5(1): 65CrossRefPubMedGoogle Scholar
  7. Chase K, Carrier DR, Adler FR, Jarvik T, Ostrander EA, et al. (2002) Genetic basis for systems of skeletal quantitative traits: principal component analysis of the canid skeleton. Proc Natl Acad Sci U S A 99(15): 9930–9935CrossRefPubMedGoogle Scholar
  8. Chase K, Lawler DF, Adler FR, Ostrander EA, Lark KG (2004) Bilaterally asymmetric effects of quantitative trait loci (QTLs): QTLs that affect laxity in the right versus left coxofemoral (hip) joints of the dog (Canis familiaris). Am J Med Genet 124A(3): 239–247CrossRefGoogle Scholar
  9. Churchill G (2000) Mathematical approaches to analysis of complex phenotypes. Short Course, Jackson Laboratory, Bar Harbor, ME, October 11–16, 2000Google Scholar
  10. Farese JP, Todhunter RJ, Lust G, Williams AJ, Dykes NL (1998) Dorsolateral subluxation of hip joints in dogs measured in a weight-bearing position with radiography and computed tomography. Vet Surg 27(5): 393–405PubMedGoogle Scholar
  11. Farese JP, Lust G, Williams AJ, Dykes NL, Todhunter RJ (1999) Comparison of measurements of dorsolateral subluxation of the femoral head and maximal passive laxity for evaluation of the coxofemoral joint in dogs. Am J Vet Res 60(12): 1571–1576PubMedGoogle Scholar
  12. Glazier AM, Nadeau JH, Aitman TJ (2002) Finding genes that underlie complex traits. Science 298(5602): 2345–2349CrossRefPubMedGoogle Scholar
  13. Gratacos M, Nadal M, Hitte C, Kim L, Cadieu E, et al. (2001) A polymorphic genomic duplication on human chromosome 15 is a susceptibility factor for panic and phobic disorders. Cell 106(3): 367–379CrossRefPubMedGoogle Scholar
  14. Guyon R, Lorentzen TD, Hitte C, Kim L, Cadieu E, et al. (2003) A 1-Mb resolution radiation hybrid map of the canine genome. Proc Natl Acad Sci U S A 100(9): 5296–5301CrossRefPubMedGoogle Scholar
  15. Haley CS, Knott SA (1992) A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69: 315–324Google Scholar
  16. Henry GA (1992) Radiographic development of canine hip dysplasia. Vet Clin North Am Small Anim Pract 22(3): 559–578PubMedGoogle Scholar
  17. Holderbaum D, Haqqi TM, Moskowitz RW (1999) Genetics and osteoarthritis: exposing the iceberg. Arthritis Rheum 42(3): 397–405CrossRefPubMedGoogle Scholar
  18. James JIP, Wynne-Davies R (1969) Factors in orthopedics. In Recent Advances in Orthopedics. Apley AG (ed.) (London: J & A Churchill Ltd) pp 1–35Google Scholar
  19. Kaneene JB, Mostosky UV, Padgett GA (1997) Retrospective cohort study of changes in hip joint phenotype of dogs in the United States. J Am Vet Med Assoc 211(12): 1542–1544PubMedGoogle Scholar
  20. Lawson DD (1963) The radiographic diagnosis of hip dysplasia in the dog. Vet Rec 75: 445–456Google Scholar
  21. Leighton EA, Holle D, Roberts D (2001) The Seeing Eye breeding program: Results obtained and lessons learned. International Working Dog Breeding Conference, San Antonio, TX, 10–12 September, 2001Google Scholar
  22. Lou X-Y, Todhunter RJ, Lin M, Lu Q, Liu T, et al. (2003) The extent and distribution of linkage disequilibrium in a multi-hierarchic outbred canine pedigree. Mamm Genome 14(8): 555–564CrossRefPubMedGoogle Scholar
  23. Lou X-Y, Casella G, Todhunter RJ, Yang MC, Wu R (2005) A general statistical framework for unifying interval and linkage disequilibrium mapping: toward high resolution mapping of quantitative traits. J Am Stat Assoc 100, 158–171Google Scholar
  24. Lust G, Williams AJ, Burton-Wurster N, Pijanowski GJ, Beck KA, et al. (1993) Joint laxity and its association with hip dysplasia in Labrador retrievers. Am J Vet Res 54(12): 1990–1999PubMedGoogle Scholar
  25. Lust G, Todhunter RJ, Erb HN, Dykes NL, Williams AJ, et al. (2001a) Comparison of three radiographic methods for diagnosis of hip dysplasia in eight-month-old dogs. J Am Vet Med Assoc 219(9): 1242–1246Google Scholar
  26. Lust G, Todhunter RJ, Erb HN, Dykes NL, Williams AJ, et al. (2001b) Repeatability of dorsolateral subluxation scores in dogs and correlation with macroscopic appearance of hip osteoarthritis. Am J Vet Res 62(11): 1711–1715Google Scholar
  27. Matise TC, Perlin M, Chakravarti A (1993) MultiMap: an expert system for automated genetic linkage mapping. Proc Int Conf Intell Syst Mol Biol 1: 260–265PubMedGoogle Scholar
  28. Olsson SE (1961) Roentgen examination of the hip joints of German Shepherd Dogs. Adv Small Anim Pract 3: 117–118Google Scholar
  29. Rendano VT, Ryan G (1985) Canine hip dysplasia evaluation. Vet Radiol 26: 170–186CrossRefGoogle Scholar
  30. Richman M, Mellersh CS, Andre C, Galibert F, Ostrander EA, et al. (2001) Characterization of a minimal screening set of 172 microsatellite markers for genome-wide screens of the canine genome. J Biochem Biophys Methods 47(1-2): 137–149CrossRefPubMedGoogle Scholar
  31. Roby P, Eyre S, Worthington J, Ramesar R, Cilliers H, et al. (1999) Autosomal dominant (Beukes) premature degenerative osteoarthropathy of the hip joint maps to an 11-cM region on chromosome 4q35. Am J Hum Genet 64(3): 904–908CrossRefPubMedGoogle Scholar
  32. SAS Institute (1988) The Princomp Procedure. In: SAS/STAT User’s Guide, v6.03. (Cary, NC: SAS Institute Inc), pp 751–772Google Scholar
  33. Seaton G, Haley CS, Knott SA, Kearsey M, Visscher PM (2002) QTL Express: mapping quantitative trait loci in simple and complex pedigrees. Bioinformatics 18(2): 339–340CrossRefPubMedGoogle Scholar
  34. Smith GK (1997) Advances in diagnosing canine hip dysplasia. J Am Vet Med Assoc 210: 1451–1457PubMedGoogle Scholar
  35. Smith GK, Gregor TP, Rhodes WH, Biery DN (1993) Coxofemoral joint laxity from distraction radiography and its contemporaneous and prospective correlation with laxity, subjective score, and evidence of degenerative joint disease from conventional hip-extended radiography in dogs. Am J Vet Res 54(7): 1021–1042PubMedGoogle Scholar
  36. Smith GK, Popovitch CA, Gregor TP, Shofer FS (1995) Evaluation of risk factors for degenerative joint disease associated with hip dysplasia in dogs. J Am Vet Med Assoc 206(5): 642–647PubMedGoogle Scholar
  37. Smith GK, Mayhew PD, Kapatkin AS, McKelvie PJ, Shofer FS, et al. (2001) Evaluation of risk factors for degenerative joint disease associated with hip dysplasia in German Shepherd Dogs, Golden Retrievers, Labrador Retrievers, and Rottweilers. J Am Vet Med Assoc 219(12): 1719–1724PubMedGoogle Scholar
  38. Sollazzo V, Bertolani G, Calzolari E, Atti G, Scapoli C (2000) A two-locus model for non-syndromic congenital dysplasia of the hip (CDH). Ann Hum Genet 64(Pt 1): 51–59CrossRefPubMedGoogle Scholar
  39. Todhunter RJ, Lust G (2003) Canine hip dysplasia: pathogenesis. In Textbook of Small Animal Surgery Slatter D (ed.) (Philadelphia: W.B. Saunders) pp 2009–2019Google Scholar
  40. Todhunter RJ, Zachos TA, Gilbert RO, Erb HN, Williams AJ, et al. (1997) Onset of epiphyseal mineralization and growth plate closure in radiographically normal and dysplastic Labrador retrievers. J Am Vet Med Assoc 210(10): 1458–1462PubMedGoogle Scholar
  41. Todhunter RJ, Acland GM, Olivier M, Williams AJ, Vernier-Singer M, et al. (1999) An outcrossed canine pedigree for linkage analysis of hip dysplasia. J Hered 90(1): 83–92CrossRefPubMedGoogle Scholar
  42. Todhunter RJ, Bliss SP, Casella G, Wu R, Lust G, et al.(2003a) Genetic structure of susceptibility traits for hip dysplasia and microsatellite informativeness of an outcrossed canine pedigree. J Hered 94(1): 39–48CrossRefGoogle Scholar
  43. Todhunter RJ, Casella G, Bliss SP, Lust G, Williams AJ, et al. (2003b) Power of a Labrador Retriever-Greyhound pedigree for linkage analysis of hip dysplasia and osteoarthritis. Am J Vet Res 64(4): 418–424Google Scholar
  44. Todhunter RJ, Grohn YT, Bliss SP, Wilfand A, Williams AJ, et al. (2003c) Evaluation of multiple radiographic predictors of cartilage lesions in the hip joints of eight-month-old dogs. Am J Vet Res 64(12): 1472–1478Google Scholar
  45. Weber JL, Broman KW (2001) Genotyping for human whole-genome scans: past, present, and future. Adv Genet 42: 77–96PubMedGoogle Scholar
  46. Weinstein SL (1996) Developmental hip dysplasia and dislocation. In:Morrisy RT, Weinstein SL(eds.) Lovell and Winter’s Pediatric Orthopedics Vol. II, Philadelphia: Lippincott-Raven, pp 903–950Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Rory J. Todhunter
    • 1
  • Raluca Mateescu
    • 1
  • George Lust
    • 2
  • Nancy I. Burton-Wurster
    • 2
  • Nathan L. Dykes
    • 1
  • Stuart P. Bliss
    • 1
  • Alma J. Williams
    • 2
  • Margaret Vernier-Singer
    • 1
  • Elizabeth Corey
    • 2
  • Carlos Harjes
    • 1
  • Richard L. Quaas
    • 3
  • Zhiwu Zhang
    • 3
  • Robert O. Gilbert
    • 1
  • Dietrich Volkman
    • 1
  • George Casella
    • 4
  • Rongling Wu
    • 4
  • Gregory M. Acland
    • 2
  1. 1.Department of Clinical Sciences, Box 32 College of Veterinary MedicineCornell UniversityNew YorkUSA
  2. 2.James A. Baker Institute for Animal Health, College of Veterinary MedicineCornell UniversityNew YorkUSA
  3. 3.Department of Animal Breeding, College of Agriculture and Life SciencesCornell UniversityNew YorkUSA
  4. 4.Department of StatisticsUniversity of FloridaGainesvilleUSA

Personalised recommendations