Skip to main content

Advertisement

Log in

Mutation identification in a canine model of X-linked ectodermal dysplasia

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

X-linked hypohidrotic ectodermal dysplasia (XHED), an inherited disease recognized in humans, mice, and cattle, is characterized by hypotrichosis, a reduced number or absence of sweat glands, and missing or malformed teeth. In a subset of affected individuals and animals, mutations in the EDA gene (formerly EDI), coding for ectodysplasin, have been found to cause this phenotype. Ectodysplasin is a homotrimeric transmembrane protein with an extracellular TNF-like domain, which has been shown to be involved in the morphogenesis of hair follicles and tooth buds during fetal development. Some human XHED patients also have concurrent immunodeficiency, due to mutations in the NF-κB essential modulator protein (IKBKG; formerly NEMO), which is also encoded on the X chromosome. In a breeding colony of dogs with XHED, immune system defects had been suspected because of frequent pulmonary infections and unexpected deaths resulting from pneumonia. To determine if defects in EDA or IKBKG cause XHED in the dogs, linkage analysis and sequencing experiments were performed. A polymorphic marker near the canine EDA gene showed significant linkage to XHED. The canine EDA gene was sequenced and a nucleotide substitution (G to A) in the splice acceptor site of intron 8 was detected in affected dogs. In the presence of the A residue, a cryptic acceptor site within exon 9 is used, leading to a frame shift and use of a premature stop codon that truncates the translation of both isoforms, EDA-A1 and EDA-A2, resulting in the absence of the TNF-like homology domain, the receptor-binding site of ectodysplasin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bayés M, Hartung A, Ezer S, Pispa J, Thesleff I, et al. (1998) The anhidrotic ectodermal dysplasia gene (EDA) undergoes alternative splicing and encodes ectodysplasin-A with deletion mutations in collagenous repeats. Hum Mol Gen 7: 1661–1669

    Article  PubMed  Google Scholar 

  • Beahrs JO, Lillington GA, Rosan RC, Russin L, Lindgren JA, et al. (1971) Anhidrotic ectodermal dysplasia: predisposition to bronchial disease. Ann Intern Med 74: 92–96

    PubMed  Google Scholar 

  • Breen M, Jouquand S, Renier C, Mellersh CS, Hitte C, et al. (2001) Chromosome-specific single-locus FISH probes allow anchorage of an 1800-marker integrated radiation-hybrid/linkage map of the domestic dog genome to all chromosomes. Genome Res 11: 1784–1795

    Article  PubMed  Google Scholar 

  • Casal ML, Jezyk PF, Greek JM, Goldschmidt MH, Patterson DF (1997) X-linked ectodermal dysplasia in a German Shepherd dog. J Hered 88: 513–517

    PubMed  Google Scholar 

  • Casal ML, Ryan S, Rhodes JL, Scheidt JL (2003) Immunological aspects of X-linked ectodermal dysplasia: A dog model for the human disease. Am J Humn Genet 73: (Suppl), 454

    Google Scholar 

  • Casal ML, Mauldin EA, Gaide O, Scheidt JL, Rhodes JL (2004) Canine X-linked ectodermal dysplasia as a model for the human disease: mutational analysis and further characterization of disease. (Proceedings of the American Society of Human Genetics. Oct. 2004 Vol 54, PP. 485. Toronto: The American Society of Human Genetics)

  • Caswell JL, Yager JA, Parker WM, Moore PF (1997) A prospective study of the immunophenotype and temporal changes in the histologic lesions of canine demodicosis. Vet Pathol 34: 279–287

    PubMed  Google Scholar 

  • Chen Y, Molloy SS, Thomas L, Gambee J, Bachinger HP, et al. (2001) Mutations within a furin consensus sequence block proteolytic release of ectodysplasin-A and cause X-linked hypohidrotic ectodermal dysplasia. Proc Natl Acad Sci USA 98: 7218–7223

    Article  PubMed  Google Scholar 

  • Clarke A (1987) Hypohidrotic ectodermal dysplasia. J Med Genet 24: 659–663

    PubMed  Google Scholar 

  • Clarke A, Phillips DI, Brown R, Harper PS (1987) Clinical aspects of X-linked hypohidrotic ectodermal dysplasia. Arch Dis Child 62: 989–996

    PubMed  Google Scholar 

  • Cottingham RW, Jr, Idury RM, Schaffer AA (1993) Faster sequential genetic linkage computations. Am J Hum Genet 53: 252–263

    PubMed  Google Scholar 

  • Döffinger R, Smahi A, Bessia C, Geissmann F, Feinberg J, et al. (2001) X-linked anhidrotic ectodermal dysplasia with immunodeficiency is caused by impaired NK-kB signaling. Nat Genet 27: 277–285

    Article  PubMed  Google Scholar 

  • Drögemüller C, Distl O, Leeb T (2001) Partial deletion of the bovine ED1 gene causes anhidrotic ectodermal dysplasia in cattle. Genome Res 11: 1699–1705

    Article  PubMed  Google Scholar 

  • Drögemüller C, Peters M, Pohlenz J, Distl O, Leeb T (2002) A single point mutation within the ED1 gene disrupts correct splicing at two different splice sites and leads to anhidrotic ectodermal dysplasia in cattle. J Mol Med 80: 319–323

    Article  PubMed  Google Scholar 

  • Elomaa O, Pulkkinen K, Hannelius U, Mikkola M, Saarialho-Kere U, et al. (2001) Ectodysplasin is released by proteolytic shedding and binds to the EDAR protein. Hum Mol Gen 10: 953–962

    Article  PubMed  Google Scholar 

  • Ferguson BM, Thomas NS, Munoz F, Morgan D, Clarke A, (1998) Scarcity of mutations detected in families with X-linked hypohidrotic ectodermal dysplasia: diagnostic implications. J Med Genet 35: 112–115

    PubMed  Google Scholar 

  • Gilgenkrantz S, Blanchet–Bardon C, Nazzaro V, Formiga L, Mujica P, et al. (1989) Hypohidrotic ectodermal dysplasia. Clinical study of a family of 30 over three generations. Hum Genet 81:120–122

    Article  PubMed  Google Scholar 

  • Hertz JM, Norgaard Hansen K, Juncker I, Kjeldsen M, Gregersen N (1998) A novel missense mutation (402C(T) in exon 1 in the EDA gene in a family with X-linked hypohidrotic ectodermal dysplasia. Clin Genet 53: 205–209

    PubMed  Google Scholar 

  • Jain A, Ma CA, Liu S, Brown M, Cohen J, et al. (2001) Specific missense mutations in NEMO result in hyper-IgM syndrome with hypohydrotic ectodermal dysplasia. Nat Immunol 2: 223–228

    Article  PubMed  Google Scholar 

  • Kere J, Srivastava AK, Montonen O, Zonana J, Thomas N, et al. (1996) X-linked anhidrotic (hypohidrotic) ectodermal dysplasia is caused by mutation in a novel transmembrane protein. Nat Genet 13: 409–416

    Article  PubMed  Google Scholar 

  • Kirkness EF, Bafna V, Halpern AL, Levy S, Remington K, et al. (2003) The dog genome: survey sequencing and comparative analysis. Science 301: 1898–1903

    Article  PubMed  Google Scholar 

  • Kosaki K, Shimasaki N, Fukushima H, Kara M, Ogata T, (2001) Female patient showing hypohidrotic ectodermal dysplasia and immunodeficiency (HED-ID). Am J Hum Genet 69: 664–665

    Article  PubMed  Google Scholar 

  • Lathrop GM, Lalouel JM, Julier C, Ott J (1984) Strategies for multilocus linkage analysis in humans. Proc Natl Acad Sci USA 81: 3443–3446

    PubMed  Google Scholar 

  • Monreal AW, Zonana J, Ferguson B (1998) Identification of a new splice form of the EDA1 gene permits detection of nearly all X-linked hypohidrotic ectodermal dysplasia mutations. Am J Hum Genet 63: 380–389

    Article  PubMed  Google Scholar 

  • Newton K, French DM, Yan M, Frantz GD, Dixit VM (2004) Myodegeneration in EDA-A2 transgenic mice is prevented by XEDAR deficiency. Mol Cell Biol 24: 1608–1613

    Article  PubMed  Google Scholar 

  • Paakkonen K, Cambiaghi S, Novelli G, Ouzts LV, Penttinen M, et al. (2001) The mutation spectrum of the EDA gene in X-linked anhidrotic ectodermal dysplasia. Hum Mutat 17: 349

    Article  Google Scholar 

  • Pinheiro M, Freire–Maia N (1994) Ectodermal dysplasias: a clinical classification and a causal review. Am J Med Genet 53: 153–162

    Article  PubMed  Google Scholar 

  • Schaffer AA, Gupta SK, Shriram K, Cottingham RW Jr (1994) Avoiding recomputation in linkage analysis. Hum Hered 44: 225–237

    PubMed  Google Scholar 

  • Schneider P, Street SL, Gaide O, Hertig S, Tardivel A, et al. (2001) Mutations leading to X-linked hypohidrotic ectodermal dysplasia affect three major functional domains in the tumor necrosis factor family member ectodysplasin-A. J Biol Chem 276: 18819–18827

    Article  PubMed  Google Scholar 

  • Smahi A, Courtois G, Vabres P, Yamaoka S, Heuertz S, et al. (2000) Genomic rearrangement in NEMO impairs NF-kB activation and is a cause of incontinentia pigmenti: The International Incontinentia Pigmenti (IP) Consortium. Nature 405: 466–472

    Article  PubMed  Google Scholar 

  • Soderholm AL, Kaitila I (1985) Expression of X-linked hypohidrotic ectodermal dysplasia in six males and in their mothers. Clin Genet 28: 136–144

    PubMed  Google Scholar 

  • Srivastava AK, Durmowicz MC, Hartung AJ, Hudson J, Ouzts LV, et al. (2001) Ectodysplasin-A1 is sufficient to rescue both hair: growth and sweat glands in Tabby mice. Hum Mol Genet 10: 2973–2981

    Article  PubMed  Google Scholar 

  • Werner P, Raducha MG, Shin D, Ostrander EA, Kirkness E, et al. (2004) Assignment of 10 canine genes to the canine linkage and comparative maps. Anim Genet 35: 249–251

    Article  PubMed  Google Scholar 

  • Yan M, Wang LC, Hymowitz SG, Schilbach S, Lee J, et al. (2000) Two amino acid molecular switch in an epithelial morphogen that regulates binding to two distinct receptors. Science 290: 523–527

    Article  PubMed  Google Scholar 

  • Zonana J, Gault J, Davies KJ, Jones M, Browne D, et al. (1993) Detection of a molecular deletion at the DXS732 locus in a patient with X-linked hypohidrotic ectodermal dysplasia (EDA), with the identification of a unique junctional fragment. Am J Hum Genet 52: 78–84

    PubMed  Google Scholar 

  • Zonana J, Elder ME, Schneider LC, Orlow SJ, Moss C, et al. (2000) A novel X-linked disorder of hnmune deficiency and hypohidrotic ectodermal dysplasia is allelic to incontinentia pigmenti and due to mutations in IKK-gamma (NEMO). Am J Hum Genet 67: 1555–1562

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported with funds from the National Foundation for Ectodermal Dysplasias and the National Institutes of Health (KO1-AR049817 and P40-RRO2512). The authors thank Dr. Ewan Kirkness and Dr. Claire Fraser for sharing canine genome sequences prior to publication and Dr. Mark Haskins for critical advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margret L. Casal.

Additional information

The sequence data described in this article have been submitted to GenBank under accession numbers AY924407–AY924414.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casal, M.L., Scheidt, J.L., Rhodes, J.L. et al. Mutation identification in a canine model of X-linked ectodermal dysplasia. Mamm Genome 16, 524–531 (2005). https://doi.org/10.1007/s00335-004-2463-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-004-2463-4

Keywords

Navigation