Skip to main content
Log in

Genetic and phenotypic analysis of Tcm, a mutation affecting early eye development

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

Tcm (total cataract with microphthalmia) is an autosomal dominant mouse eye mutation. Heterozygous Tcm/+ mice are born with several eye malformations including microphthalmia, retinal and iris dysplasia, total lens cataract, and ventral coloboma. The Tcm mutation was previously mapped to a 26-Mb region on Chr 4 between D4Mit235 and D4Mit106. In this study, we characterize the Tcm/Tcm homozygous mutant and find they are viable but severely microphthalmic. The developing eye in the Tcm/Tcm homozygote shows defects during early eye development, before formation of the optic cup. Further genetic mapping reduced the Tcm critical region to a 1.3-Mb region bordered by SNPs rs3666764 and rs3713818. This critical region contains two known genes (Asph and Gfd6) and three predicted genes, all of which are positional candidates for Tcm. Sequence analysis of Tcm genomic DNA revealed no mutations in the coding regions and splice site junctions of the five candidate genes. These results indicate that the causitive Tcm mutation falls within a noncoding regulatory region of one of the five candidate genes or in an undescribed gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990). Basic local alignment search tool. J Mol Biol 215: 403–410

    Article  PubMed  Google Scholar 

  • Anchan RM, Reh TA, Angello J, Balliet A, Walker M (1991) EGF and TGF-alpha stimulate retinal neuroepithelial cell proliferation in vitro. Neuron 6: 923–936

    Article  PubMed  Google Scholar 

  • Burmeister M, Novak J, Liang MY, Basu S, Ploder L, et al. (1996) Ocular retardation mouse caused by Chx10 homeobox null allele: impaired retinal progenitor proliferation and bipolar cell differentiation. Nat Genet 12: 376–384

    Article  PubMed  Google Scholar 

  • Burstedt MS, Forsman–Semb K, Golovleva I, Janunger T, Wachtmeister L, et al. (2001) Ocular phenotype of bothnia dystrophy, an autosomal recessive retinitis pigmentosa associated with an R234 W mutation in the RLBP1 gene. Arch Ophthalmol 119: 260–267

    PubMed  Google Scholar 

  • Chang C, Hemmati–Brivanlou A (1999) Xenopus GDF6, a new antagonist of noggin and a partner of BMPs. Development 126: 3347–3357

    PubMed  Google Scholar 

  • Daniel A, Dumstrei K, Lengyel JA, Hartenstein V (1999) The control of cell fate in the embryonic visual system by atonal, tailless and EGFR signaling. Development 126: 2945–2954

    PubMed  Google Scholar 

  • Dinchuk JE, Henderson NL, Burn TC, Huber R, Ho SP, et al. (2000) Aspartyl beta-hydroxylase (Asph) and an evolutionarily conserved isoform of Asph missing the catalytic domain share exons with junctin. J Biol Chem 275: 39543–39554

    Article  PubMed  Google Scholar 

  • Dinchuk JE, Focht RJ, Kelley JA, Henderson NL, Zolotarjova NI et al. (2002) Absence of post-translational aspartyl beta-hydroxylation of epidermal growth factor domains in mice leads to developmental defects and an increased incidence of intestinal neoplasia. J Biol Chem 277: 12970–12977

    Article  PubMed  Google Scholar 

  • Fantes J, Ragge NK, Lynch SA, McGill NI, Collin JR, (2003) Mutations in SOX2 cause anophthahnia. Nat Genet 33: 461–463

    PubMed  Google Scholar 

  • Glaser T, Jepeal L, Edwards JG, Young SR, Favor J et al. (1994) PAX6 gene dosage effect in a family with congenital cataracts, aniridia, anophthalmia and central nervous system defects. Nat Genet 7: 463–471

    Article  PubMed  Google Scholar 

  • Goudreau G, Petrou P, Reneker LW, Graw J, Loster J, et al. (2002) Mutually regulated expression of Pax6 and Six3 and its implications for the Pax6 haploinsufficient lens phenotype. Proc Natl Acad Sci USA 99: 8719–8724

    Article  PubMed  Google Scholar 

  • Graw J, Favor J, Neuhauser–Klaus A, Ehling UH (1986) Dominant cataract and recessive specific locus mutations in offspring of X-irradiated male mice. Mutat Res 159: 47–54

    PubMed  Google Scholar 

  • Hallsson JH, Favor J, Hodgkinson C, Glaser T, Lamoreux ML, et al. (2000) Genomic, transcriptional and mutational analysis of the mouse microphthalmia locus. Genetics 155: 291–300

    PubMed  Google Scholar 

  • Hill RE, Favor J, Hogan BL, Ton CC, Saunders GF, et al. (1991) Mouse small eye results from mutations in a paired-like homeobox-containing gene. Nature 354: 522–525

    Article  PubMed  Google Scholar 

  • Intres R, Goldflam S, Cook JR, Crabb JW (1994) Molecular cloning and structural analysis of the human gene encoding cellular retinaldehyde-binding protein. J Biol Chem 269: 25411–25418

    PubMed  Google Scholar 

  • Kaufman MH (1992) The atlas of mouse development (London, San Diego: Academic Press)

    Google Scholar 

  • Manly KF, Cudmore RH, Jr, Meer JM (2001) Map Manager QTX, cross-platform software for genetic mapping. Mamm Genome 12: 930–932

    Article  PubMed  Google Scholar 

  • Marsh–Armstrong N, McCaffery P, Gilbert W, Dowling JE, Drager UC (1994) Retinoic acid is necessary for development of the ventral retina in zebrafish. Proc Natl Acad Sci USA 91: 7286–7290

    PubMed  Google Scholar 

  • Martinez–Morales JR, Signore M, Acampora D, Simeone A, Bovolenta P (2001) Otx genes are required for tissue specification in the developing eye. Development 128: 2019–2030

    PubMed  Google Scholar 

  • Mathers PH, Grinberg A, Mahon KA, Jamrich M (1997) The Rx homeobox gene is essential for vertebrate eye development. Nature 387: 603–607

    Article  PubMed  Google Scholar 

  • Matsuo I, Kuratani S, Kimura C, Takeda N, Aizawa S (1995) Mouse Otx2 functions in the formation and patterning of rostral head. Genes Dev 9: 2646–2658

    PubMed  Google Scholar 

  • Maw MA, Kennedy B, Knight A, Bridges R, Roth KE, (1997) Mutation of the gene encoding cellular retinaldehyde-binding protein in autosomal recessive retinitis pignientosa. Nat Genet 17: 198–200

    Article  PubMed  Google Scholar 

  • McCaffery P, Lee MO, Wagner MA, Sladek NE, Drager UC (1992) Asymmetrical retinoic acid synthesis in the dorsoventral axis of the retina. Development 115: 371–382

    PubMed  Google Scholar 

  • McCaffery P, Posch KC, Napoli JL, Gudas L, Drager UC (1993) Changing patterns of the retinoic acid system in the developing retina. Dev Biol 158: 390–399

    Article  PubMed  Google Scholar 

  • Morimura H, Berson EL, Dryja TP (1999) Recessive mutations in the RLBP1 gene encoding cellular retinaldehyde-binding protein in a form of retinitis punctata albescens. Invest Ophthalmol Vis Sci 40: 1000–1004

    PubMed  Google Scholar 

  • Morotome Y, Goseki–Sone M, Ishikawa I, Oida S (1998) Gene expression of growth and differentiation factors-5, -6, and -7 in developing bovine tooth at the root forming stage. Biochem Biophys Res Commun 244: 85–90

    Article  PubMed  Google Scholar 

  • Panagabko C, Morley S, Hernandez M, Cassolato P, Gordon H, et al. (2003) Ligand specificity in the CRAL-TRIO protein family. Biochemistry 42: 6467–6474

    Article  PubMed  Google Scholar 

  • Percin EF, Ploder LA, Yu JJ, Arici K, Horsford DJ, et al. (2000) Human microphthahnia associated with mutations in the retinal homeobox gene CHX10. Nat Genet As, 25:397–401

    Google Scholar 

  • Porter FD, Drago J, Xu Y, Cheema SS, Wassif C, et al. (1997) Lhx2, a LIM homeobox gene, is required for eye, forebrain, and definitive erythrocyte development. Development 124: 2935–2944

    PubMed  Google Scholar 

  • Rissi M, Wittbrodt J, Delot E, Naegeli M, Rosa FM, (1995) Zebrafish Radar: a new member of the TGF-beta superfamily defines dorsal regions of the neural plate and the embryonic retina. Mech Dev 49: 223–234

    Article  PubMed  Google Scholar 

  • Rossant J, Tam PPL (2002) Mouse development: patterning, morphogenesis, and organogenesis (San Diego, CA: Academic Press)

    Google Scholar 

  • Saari JC, Nawrot M, Kennedy BN, Garwin GG, Hurley JB, et al. (2001) Visual cycle impairment in cellular retinaldehyde binding protein (CRALBP) knockout mice results in delayed dark adaptation. Neuron 29: 739–748

    Article  PubMed  Google Scholar 

  • Schimmenti LA, de la Cruz J, Lewis RA, Karkera JD, Manligas GS, et al. (2003) Novel mutation in sonic hedgehog in non-syndromic colobomatous microphthalmia. Am J Med Genet 116A, 215–221

    Article  Google Scholar 

  • Settle SH, Jr, Rountree RB, Sinha A, Thacker A, Higgins K, et al. (2003) Multiple joint and skeletal patterning defects caused by single and double mutations in the mouse Gdf6 and Gdf5 genes. Dev Biol 254: 116–130

    Article  PubMed  Google Scholar 

  • Storm EE, Huynh TV, Copeland NG, Jenkins NA, Kingsley DM, et al. (1994) Limb alterations in brachypodism mice due to mutations in a new member of the TGF beta-superfamily. Nature 368: 639–643

    Article  PubMed  Google Scholar 

  • Takebayashi K, Chida K, Tsukamoto I, Morii E, Munakata H, et al. (1996) The recessive phenotype displayed by a dominant negative microphthalmia-associated transcription factor mutant is a result of impaired nucleation potential. Mol Cell Biol 16: 1203–1211

    PubMed  Google Scholar 

  • Thompson PM, Gotoh T, Kok M, White PS, Brodeur GM (2003) CHD5, a new member of the chromodomain gene family, is preferentially expressed in the nervous system. Oncogene 22: 1002–1011

    Article  PubMed  Google Scholar 

  • van Heyningen V, Williamson KA (2002) PAX6 in sensory development. Hum Mol Genet 11: 1161–1167

    Article  PubMed  Google Scholar 

  • van Raamsdonk CD, Tilghman SM (2000) Dosage requirement and allelic expression of PAX6 during lens placode formation. Development 127: 5439–15448

    PubMed  Google Scholar 

  • Vincent MC, Pujo AL, Olivier D, Calvas P (2003) Screening for PAX6 gene mutations is consistent with haploinsufficiency as the main mechanism leading to various ocular defects. Eur J Hum Genet 11: 163–169

    Article  PubMed  Google Scholar 

  • Vissers LE, van Ravenswaaij CM, Admiraal R, Hurst JA, de Vries BB, et al. (2004) Mutations in a new member of the chromodomain gene family cause CHARGE syndrome. Nat Genet 36: 955–957

    Article  PubMed  Google Scholar 

  • Voronina VA, Kozhemyakina EA, O’Kernick CM, Kahn ND, Wenger SL et al. (2004) Mutations in the human RAX homeobox gene in a patient with anophthalmia and sclerocornea. Hum Mol Genet 13: 315–322

    Article  PubMed  Google Scholar 

  • Woodage T, Basrai MA, Baxevanis AD, Hieter P, Collins FS (1997) Characterization of the CHD family of proteins. Proc Natl Acad Sci USA 94: 11472–11477

    Article  PubMed  Google Scholar 

  • Zhou E, Grimes P, Favor J, Koeberlein B, Pretsch W, et al. (1997) Genetic mapping of a mouse ocular malformation locus, Tcm, to chromosome 4. Mamm Genome 8: 178–181

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the late Patricia A. Grimes (Department of Ophthalmology, University of Pennsylvania) for her expertise and assistance in the analysis and interpretation of the Tcm histopathology. This research was supported in part by funding from the NIH Medical Scientist Training Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dwight Stambolian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, K.S., Zahn, L.E., Favor, J. et al. Genetic and phenotypic analysis of Tcm, a mutation affecting early eye development. Mamm Genome 16, 332–343 (2005). https://doi.org/10.1007/s00335-004-2444-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-004-2444-7

Keywords

Navigation