Mammalian Genome

, Volume 15, Issue 8, pp 637–647

Genetic structure of the LXS panel of recombinant inbred mouse strains: a powerful resource for complex trait analysis

  • Robert W. Williams
  • Beth Bennett
  • Lu Lu
  • Jing Gu
  • John C. DeFries
  • Phyllis J. Carosone–Link
  • Brad A. Rikke
  • John K. Belknap
  • Thomas E. Johnson
Original Contributions

Abstract

The set of LXS recombinant inbred (RI) strains is a new and exceptionally large mapping panel that is suitable for the analysis of complex traits with comparatively high power. This panel consists of 77 strains—more than twice the size of other RI sets— and will typically provide sufficient statistical power (β = 0.8) to map quantitative trait loci (QTLs) that account for ∼25% of genetic variance with a genomewide p < 0.05. To characterize the genetic architecture of this new set of RI strains, we genotyped 330 MIT microsatellite markers distributed on all autosomes and the X Chromosome and assembled error-checked meiotic recombination maps that have an average F2-adjusted marker spacing of ∼4 cM. The LXS panel has a genetic structure consistent with random segregation and subsequent fixation of alleles, the expected 3–4 × map expansion, a low level of nonsyntenic association among loci, and complete independence among all 77 strains. Although the parental inbred strains—Inbred Long-Sleep (ILS) and Inbred Short-Sleep (ISS)—were derived originally by selection from an 8-way heterogeneous stock selected for differential sensitivity to sedative effects of ethanol, the LXS panel is also segregating for many other traits. Thus, the LXS panel provides a powerful new resource for mapping complex traits across many systems and disciplines and should prove to be of great utility in modeling the genetics of complex diseases in human populations.

References

  1. Allan, A, Isaacson, R 1985Ethanol-induced grooming in mice selectively bred for differential sensitivity to ethanolBehav Neural Biol44386392PubMedGoogle Scholar
  2. Bailey, DW 1971Recombinant inbred strainsTransplantation11325327PubMedGoogle Scholar
  3. Bailey, DW 1981

    Recombinant inbred strains and bilineal congenic strains

    Foster, HLSmall, JDFox, JG eds. The Mouse in Biomedical ResearchAcademic PressNew York223239
    Google Scholar
  4. Belknap, JK 1998Effect of within-strain sample size on QTL detection and mapping using recombinant inbred mouse strainsBehav Genet282938CrossRefPubMedGoogle Scholar
  5. Belknap, JK, Mitchell, SR, O’Toole, LA, Helms, ML, Crabbe, JC 1996Type 1 and type 2 error rates for quantitative trait loci (QTL) mapping studies using recombinant inbred mouse strainsBehav Genet26149160PubMedGoogle Scholar
  6. Bennett, B, Beeson, M, Gordon, L, Johnson, TE 2002Reciprocal congenics defining individual quantitative trait loci for sedative/hypnotic sensitivity to ethanolAlcohol Clin Exp Res26149157PubMedGoogle Scholar
  7. Broman, KW, Rowe, LB, Churchill, GA, Paigen, K 2002Crossover interference in the mouseGenetics16011231131PubMedGoogle Scholar
  8. Cao, W, Burkholder, T, Wilkins, L, Collins, AC 1993A genetic comparison of behavioral actions of ethanol and nicotine in the mirrored chamberPharmacol Biochem Behav45803809CrossRefPubMedGoogle Scholar
  9. Chesler, EJ, Wang, JB, Lu, L, Qu, Y, Manly, KE,  et al. 2003Genetic correlates of gene expression in recombinant inbred strains: A relational model system to explore neurobehavioral phenotypesNeuroinformatics1343357CrossRefPubMedGoogle Scholar
  10. Church, AC, Fuller, JL, Dann, L 1979Alcohol intake in selected lines of mice: Importance of sex and genotypeJ Comp Physiol Psychol93242246PubMedGoogle Scholar
  11. DeFries, JC, Wilson, JR, Erwin, VG, Petersen, DR 1989LS × SS recombinant inbred strains of mice: Initial characterizationAlcohol Clin Exp Res13196200PubMedGoogle Scholar
  12. Deitrich RA, Pawlowski AA (1990) Initial sensitivity to alcohol. In: A Workshop on Alcohol Intoxication (Keystone, CO: U.S. Department of Health and Human Services, Public Health Service)Google Scholar
  13. Erwin, VG, Markel, PD, Johnson, TE, Gehle, VM, Jones, BC 1997Common quantitative trait loci for alcohol-related behaviors and central nervous system neurotensin measures: Hypnotic and hypothermic effectsJ Pharmacol Exp Ther280911918PubMedGoogle Scholar
  14. Gehle, VM, Erwin, VG 2000The genetics of acute functional tolerance and initial sensitivity to ethanol for an ataxia test in the LS × SS RI strainsAlcohol Clin Exp Res24579587CrossRefPubMedGoogle Scholar
  15. Green, EL 1981Genetics and Probability in Animal Breeding ExperimentsOxford University PressNew YorkGoogle Scholar
  16. Haldane, JBS, Waddington, CH 1931Inbreeding and linkageGenetics16357374PubMedGoogle Scholar
  17. Huang, GJ, McArdle, JJ 1993Chronic ingestion of ethanol increases the number of Ca2+ channels of hippocampal neurons of long-sleep but not short-sleep miceBrain Res615328330CrossRefPubMedGoogle Scholar
  18. Jirout, M, Krenova, D, Kren, V, Breen, L, Pravenec, M,  et al. 2003A new framework marker-based linkage map and SDPs for the rat HXB/BXH strain setMamm Genome14537546CrossRefPubMedGoogle Scholar
  19. Lang, D, Beno, M, Fifkova, E, Eason, H 1997Fine structure of hippocampal dendrites in the dentate fascia of LS/SS mice after chronic ethanol treatmentProg Neuropsychopharmacol Biol Psychiatry2110311042CrossRefPubMedGoogle Scholar
  20. Lapin, IP, Mirzaev, S 1996The contrary effects of ethanol on the behavior of short-and long-sleep C57BL/6 mice in a dark-light chamberEksp Klin Farmakol595052PubMedGoogle Scholar
  21. Lu, L, Airey, DC, Williams, RW 2001Complex trait analysis of the hippocampus: Mapping and biometric analysis of two novel gene loci with specific effects on hippocampal structure in miceJ Neurosci2135033514PubMedGoogle Scholar
  22. Lynch, M, Walsh, B 1998Genetics and Analysis of Quantitative TraitsSinauer Associates, Inc.Sunderland, MAGoogle Scholar
  23. Manly, KF, Olson, JM 1999Overview of QTL mapping software and introduction to Map Manager QTMamm Genome10327334CrossRefPubMedGoogle Scholar
  24. Markel, PD, DeFries, JC, Johnson, TE 1995Use of repeated measures in ethanol-induced loss of righting reflex in inbred long-sleep and short-sleep miceAlcohol Clin Exp Res19299304PubMedGoogle Scholar
  25. Markel, PD, Fulker, DW, Bennett, B, Corley, RP, DeFries, JC,  et al. 1996Quantitative trait loci for ethanol sensitivity in the LS × SS recombinant inbred strains: Interval mappingBehav Genet26447458PubMedGoogle Scholar
  26. Markham, J, Fifkova, E, Scheetz, A 1987Effect of chronic ethanol consumption on the fine structure of the dentate gyrus in long-sleep and short-sleep miceExp Neurol95290302CrossRefPubMedGoogle Scholar
  27. McClearn, GE, Kakihana, R 1981

    Selective breeding for ethanol sensitivity: Short-sleep and long-sleep mice

    McClearn, GEDeitrich, RAErwin, VG eds. Development of Animal Models as Pharmacogenetic ToolsU.S. Government Printing OfficeWashington, DC81113
    Google Scholar
  28. McClearn, GE, Wilson, JR, Meredith, W 1970

    The use of isogenic and heterogenic mouse stocks in behavioral research

    Lindzey, GThiessen, DD eds. Contributions to Behavior–Genetic Analysis: The Mouse As a PrototypeAppleton-Century-CroftsNew York322
    Google Scholar
  29. Owens, J, Bennett, B, Johnson, TE 2002Possible pleiotropic effects of genes specifying sedative/hypnotic sensitivity to ethanol on other alcohol-related traitsAlcohol Clin Exp Res2614611467PubMedGoogle Scholar
  30. Poelchen, W, Proctor, WR, Dunwiddie, TV 2000The in vitro ethanol sensitivity of hippocampal synaptic gamma-aminobutyric acid (a) responses differs in lines of mice and rats genetically selected for behavioral sensitivity or insensitivity to ethanolJ Pharmacol Exp295741746PubMedGoogle Scholar
  31. Rikke, BA, Yerg, JE, Battaglia, ME, Nagy, TR, Allison, DB,  et al. 2003Strain variation in the response of body temperature to dietary restrictionMech Ageing Dev124663678CrossRefPubMedGoogle Scholar
  32. Rikke, BA, Yerg, JE, Battaglia, ME, Nagy, TR, Allison, DB,  et al. 2004Quantitative trait loci specifying the response of body temperature to dietary restrictionJ Gerontol59A11Google Scholar
  33. Stenehjem S, Bruggemann E (2001) Glume bar phenotypes in a b73 × mo17 recombinant inbred population reveal the epistatic interaction between p11 and b1. In: Marize Genetic Conference, 42nd Annual Marize Genetic Conference, Coeur d’Alene, ID (http://www.maizegdb.org/maize-meeting/2001/03abstracts.pdf, p 80)Google Scholar
  34. Stinchcomb, A, Bowers, BJ, Wehner, JM 1989The effects of ethanol and ro 15-4513 on elevated plus-maze and rotarod performance in long-sleep and short-sleep miceAlcohol5369376CrossRefGoogle Scholar
  35. Swanberg, KM, Wilson, JR, Kalisker, A 1979Developmental and genotypic effects on pituitary–adrenal function and alcohol tolerance in miceDev Psychobiol12201210PubMedGoogle Scholar
  36. Taylor, BA 1978

    Recombinant inbred strains: Use in gene mapping

    Morse, HC eds. Origins of Inbred MiceAcademic PressNew York423435
    Google Scholar
  37. Wade, CM, Kulbokas, EJ, Kirby, AW, Zody, MC, Mullikin, JC,  et al. 2002The mosaic structure of variation in the laboratory mouse genomeNature420574578CrossRefPubMedGoogle Scholar
  38. Wand, GS 1989Ethanol differentially regulates proadrenocorticotropin/endorphin production and corticosterone secretion in LS and SS lines of miceEndocrinology124518526PubMedGoogle Scholar
  39. Wand, GS 1990Differential regulation of anterior pituitary corticotrope function is observed in vivo but not in vitro in two lines of ethanol-sensitive miceAlcohol Clin Exp Res14100106PubMedGoogle Scholar
  40. Williams, RW, Gu, J, Qi, S, Lu, L 2001The genetic structure of recombinant inbred mice: High-resolution consensus maps for complex trait analysisGenome Biol24646Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Robert W. Williams
    • 4
  • Beth Bennett
    • 2
  • Lu Lu
    • 1
  • Jing Gu
    • 1
  • John C. DeFries
    • 2
    • 3
  • Phyllis J. Carosone–Link
    • 2
  • Brad A. Rikke
    • 2
  • John K. Belknap
    • 4
  • Thomas E. Johnson
    • 2
    • 3
  1. 1.Center of Genomics and Bioinformatics, Institute of Neuroscience, Department of Anatomy and NeurobiologyUniversity of Tennessee Health Science CenterMemphisUSA
  2. 2.Institute for Behavioral Genetics, CB 447University of ColoradoBoulderUSA
  3. 3.Department of Psychology, CB 345University of ColoradoBoulderUSA
  4. 4.Portland Alcohol Research CenterOregon Health Sciences UniversityPortlandUSA

Personalised recommendations