Skip to main content
Log in

Strong conservation of the human NF2 locus based on sequence comparison in five species

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

We analyzed 137 kb covering human neurofibromatosis 2 (NF2) tumor suppressor locus and orthologous loci from baboon, mouse, rat, and pufferfish Takifugu rubripes. A predominant feature of human-rodent conservation is a very similar distribution of conserved islands, regarding length, position, and degree of identity. By use of a threshold of 75% identity over ≥100 bp of gap-free alignment, comparisons of human-mouse sequences resulted in 3.58% for extra-exonic conservation, which can be compared to 4.5% of exonic sequence content within the human locus. We identified a duplication of neurofibromin 2 in pufferfish, which resulted in two putative proteins with 74% and 76% identity to the human protein. One distinct island (called inter 1), conserved between all analyzed species, was located between promoters of the NIPSNAP1 and NF2 genes. Inter 1 might represent a novel regulatory element, important for the function of this locus. The high level of intronic conservation in the NF2 locus suggests that a number of unknown regulatory elements might exist within this gene. These elements could be affected by disease-causing mutations in NF2 patients and NF2-associated tumors. Alternatively, this conservation might be explained by presence of not yet characterized transcriptional unit(s) within this locus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. SF Altschul W Gish W Miller EW Myers DJ Lipman (1990) ArticleTitleBasic local alignment search tool. J Mol Biol 215 403–410 Occurrence Handle10.1006/jmbi.1990.9999 Occurrence Handle1:CAS:528:DyaK3MXitVGmsA%3D%3D Occurrence Handle2231712

    Article  CAS  PubMed  Google Scholar 

  2. MA Ansari-Lari JC Oeltjen S Schwartz Z Zhang DM Muzny et al. (1998) ArticleTitleComparative sequence analysis of a gene-rich cluster at human chromosome 12p13 and its syntenic region in mouse chromosome 6. Genome Res 8 29–40 Occurrence Handle1:CAS:528:DyaK1cXovValtg%3D%3D Occurrence Handle9445485

    CAS  PubMed  Google Scholar 

  3. S Aparicio J Chapman E Stupka N Putnam JM Chia et al. (2002) ArticleTitleWhole-genome shotgun assembly and analysis of the genome of Fugu rubripes. Science 297 1301–1310 Occurrence Handle10.1126/science.1072104 Occurrence Handle1:CAS:528:DC%2BD38Xms1ejtr8%3D Occurrence Handle12142439

    Article  CAS  PubMed  Google Scholar 

  4. A Bretscher D Chambers R Nguyen D Reczek (2000) ArticleTitleERM-Merlin and EBP50 protein families in plasma membrane organization and function. Annu Rev Cell Dev Biol 16 113–143 Occurrence Handle1:CAS:528:DC%2BD3MXpvFOn Occurrence Handle11031232

    CAS  PubMed  Google Scholar 

  5. C Burge S Karlin (1997) ArticleTitlePrediction of complete gene structures in human genomic DNA. J Mol Biol 268 78–94 Occurrence Handle10.1006/jmbi.1997.0951 Occurrence Handle1:CAS:528:DyaK2sXjtlSqtL4%3D Occurrence Handle9149143

    Article  CAS  PubMed  Google Scholar 

  6. LS Chang EM Akhmametyeva Y Wu L Zhu DB Welling (2002) ArticleTitleMultiple transcription initiation sites, alternative splicing, and differential polyadenylation contribute to the complexity of human neurofibromatosis 2 transcripts. Genomics 79 63–76 Occurrence Handle10.1006/geno.2001.6672 Occurrence Handle1:CAS:528:DC%2BD38XpsVSnsw%3D%3D Occurrence Handle11827459

    Article  CAS  PubMed  Google Scholar 

  7. L De Vitis A Tedde F Vitelli F Ammannati P Mennonna et al. (1996) ArticleTitleScreening for mutations in the neurofibromatosis type 2 (NF2) gene in sporadic meningiomas. Hum Genet 97 632–637 Occurrence Handle10.1007/s004390050107 Occurrence Handle1:CAS:528:DyaK28XivFaitLg%3D Occurrence Handle8655144

    Article  CAS  PubMed  Google Scholar 

  8. I Dubchak M Brudno GG Loots L Pachter C Mayor et al. (2000) ArticleTitleActive conservation of noncoding sequences revealed by three-way species comparisons. Genome Res 10 1304–1306 Occurrence Handle10.1101/gr.142200 Occurrence Handle1:CAS:528:DC%2BD3cXms1yjtLk%3D Occurrence Handle10984448

    Article  CAS  PubMed  Google Scholar 

  9. L Duret P Bucher (1997) ArticleTitleSearching for regulatory elements in human noncoding sequences. Curr Opin Struct Biol 7 399–406

    Google Scholar 

  10. R Eldridge DM Parry MI Kaiser-Kupfer (1991) ArticleTitleNeurofibromatosis 2: clinical heterogeneity and natural history in 39 individuals in 9 families and 16 sporadic cases. Am J Hum Genet 49 32

    Google Scholar 

  11. DGR Evans SM Huson D Donnai W Neary V Blair et al. (1992) ArticleTitleA genetic study of type 2 neurofibromatosis in the United Kingdom. I. Prevalence, mutation rate, fitness, and confirmation of maternal transmission effect on severity. J Med Genet 29 841–846 Occurrence Handle1:STN:280:ByyC38vkslc%3D Occurrence Handle1479598

    CAS  PubMed  Google Scholar 

  12. J Felsenstein (1989) ArticleTitlePHYLIP-Phylogeny Inference Package (Version 3.2). Cladistics 5 164–166

    Google Scholar 

  13. KA Frazer JB Sheehan RP Stokowski X Chen R Hosseini et al. (2001) ArticleTitleEvolutionarily conserved sequences on human chromosome 21. Genome Res 11 1651–1659 Occurrence Handle10.1101/gr.198201 Occurrence Handle1:CAS:528:DC%2BD3MXnvFCmtrk%3D Occurrence Handle11591642

    Article  CAS  PubMed  Google Scholar 

  14. JP Huelsenbeck (1995) ArticleTitleThe robustness of two phylogenetic methods: four-taxon simulations reveal a slight superiority of maximum likelihood over neighbor joining. Mol Biol Evol 12 843–849 Occurrence Handle1:CAS:528:DyaK2MXns1yqsbY%3D Occurrence Handle7476130

    CAS  PubMed  Google Scholar 

  15. LB Jacoby M MacCollin R Barone V Ramesh JF Gusella (1996) ArticleTitleFrequency and distribution of NF2 mutations in schwannomas. Genes Chromosomes Cancer 17 45–55 Occurrence Handle1:CAS:528:DyaK28XmslKqsLc%3D Occurrence Handle8889506

    CAS  PubMed  Google Scholar 

  16. W Jang A Hua SV Spilson W Miller BA Roe et al. (1999) ArticleTitleComparative sequence of human and mouse BAC clones from the mnd2 region of chromosome 2p13. Genome Res 9 53–61 Occurrence Handle1:CAS:528:DyaK1MXhtVWkt7g%3D Occurrence Handle9927484

    CAS  PubMed  Google Scholar 

  17. DT Jones WR Taylor JM Thornton (1992) ArticleTitleThe rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8 275–282 Occurrence Handle1:CAS:528:DyaK38Xlt1Okt7w%3D Occurrence Handle1633570

    CAS  PubMed  Google Scholar 

  18. P Kapranov SE Cawley J Drenkow S Bekiranov RL Strausberg et al. (2002) ArticleTitleLarge-scale transcriptional activity in chromosomes 21 and 22. Science 296 916–919 Occurrence Handle10.1126/science.1068597 Occurrence Handle1:CAS:528:DC%2BD38XjsFymsrk%3D Occurrence Handle11988577

    Article  CAS  PubMed  Google Scholar 

  19. GG Loots RM Locksley CM Blankespoor ZE Wang W Miller et al. (2000) ArticleTitleIdentification of a coordinate regulator of interleukins 4, 13, and 5 by cross-species sequence comparisons. Science 288 136–140

    Google Scholar 

  20. JS Mattick (2001) ArticleTitleNon-coding RNAs: the architects of eukaryotic complexity. EMBO Rep 2 986–991 Occurrence Handle10.1093/embo-reports/kve230 Occurrence Handle1:CAS:528:DC%2BD3MXovFOnsL0%3D Occurrence Handle11713189

    Article  CAS  PubMed  Google Scholar 

  21. JS Mattick MJ Gagen (2001) ArticleTitleThe evolution of controlled multitasked gene networks: the role of introns and other noncoding RNAs in the development of complex organisms. Mol Biol Evol 18 1611–1630 Occurrence Handle1:CAS:528:DC%2BD3MXmt12iuro%3D Occurrence Handle11504843

    CAS  PubMed  Google Scholar 

  22. C Mayor M Brudno JR Schwartz A Poliakov EM Rubin et al. (2000) ArticleTitleVISTA: visualizing global DNA sequence alignments of arbitrary length. Bioinformatics 16 1046–1047 Occurrence Handle10.1093/bioinformatics/16.11.1046 Occurrence Handle1:CAS:528:DC%2BD3MXptlOltw%3D%3D Occurrence Handle11159318

    Article  CAS  PubMed  Google Scholar 

  23. P Merel K Hoang-Xuan M Sanson E Bijlsma G Rouleau et al. (1995) ArticleTitleScreening for germ-line mutations in the NF2 gene. Genes Chromosomes Cancer 12 117–127 Occurrence Handle1:CAS:528:DyaK2MXkvVSrsr0%3D Occurrence Handle7535084

    CAS  PubMed  Google Scholar 

  24. JC Oeltjen TM Malley DM Muzny W Miller RA Gibbs et al. (1997) ArticleTitleLarge-scale comparative sequence analysis of the human and murine Bruton's tyrosine kinase loci reveals conserved regulatory domains. Genome Res 7 315–329 Occurrence Handle1:CAS:528:DyaK2sXis1Shurs%3D Occurrence Handle9110171

    CAS  PubMed  Google Scholar 

  25. P Onyango W Miller J Lehoczky CT Leung B Birren et al. (2000) ArticleTitleSequence and comparative analysis of the mouse 1-megabase region orthologous to the human 11p15 imprinted domain. Genome Res 10 1697–1710 Occurrence Handle10.1101/gr.161800 Occurrence Handle1:CAS:528:DC%2BD3cXosVWjtL4%3D Occurrence Handle11076855

    Article  CAS  PubMed  Google Scholar 

  26. DM Parry MM MacCollin KM Kaiser K Pulaski HS Nicholson et al. (1996) ArticleTitleGerm-line mutations in the neurofibromatosis 2 gene: correlations with disease severity and retinal abnormalities. Am J Hum Gen 59 529–539 Occurrence Handle1:CAS:528:DyaK28Xls1arsLY%3D Occurrence Handle8751853

    CAS  PubMed  Google Scholar 

  27. GA Rouleau P Merel M Lutchman M Sanson J Zuckman et al. (1993) ArticleTitleAlteration of a new gene encoding a putative membrane organizing protein causes neurofibromatosis type 2. Nature 363 515–521 Occurrence Handle1:CAS:528:DyaK3sXltlKmsbg%3D Occurrence Handle8379998

    CAS  PubMed  Google Scholar 

  28. MH Ruttledge AA Andermann CM Phelan JO Claudio FY Han et al. (1996) ArticleTitleType of mutation in the neurofibromatosis type 2 gene (NF2) frequently determines severity of disease. Am J Hum Genet 59 331–342 Occurrence Handle1:CAS:528:DyaK28XkvFGrsrs%3D Occurrence Handle8755919

    CAS  PubMed  Google Scholar 

  29. S Schwartz Z Zhang KA Frazer A Smit C Riemer et al. (2000) ArticleTitlePipMaker—a web server for aligning two genomic DNA sequences. Genome Res 10 577–586 Occurrence Handle1:CAS:528:DC%2BD3cXjtVKrsLg%3D Occurrence Handle10779500

    CAS  PubMed  Google Scholar 

  30. SF Smith P Snell F Gruetzner AJ Bench T Haaf et al. (2002) ArticleTitleAnalyses of the extent of shared synteny and conserved gene orders between the genome of Fugu rubripes and human 20q. Genome Res 12 776–784 Occurrence Handle11997344

    PubMed  Google Scholar 

  31. EL Sonnhammer R Durbin (1995) ArticleTitleA dot-matrix program with dynamic threshold control suited for genomic DNA and protein sequence analysis. Gene 167 GC1–10 Occurrence Handle1:STN:280:BymC2cvjtVA%3D Occurrence Handle8566757

    CAS  PubMed  Google Scholar 

  32. T Strachan A Read (2000) Human Molecular Genetics BIOS Scientific Publishers, Ltd Oxford

    Google Scholar 

  33. JD Thompson DG Higgins TJ Gibson (1994) ArticleTitleCLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22 4673–4680 Occurrence Handle7984417

    PubMed  Google Scholar 

  34. JD Thompson TJ Gibson F Plewniak F Jeanmougin DG Higgins (1997) ArticleTitleThe CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25 4876–4882 Occurrence Handle1:CAS:528:DyaK1cXntFyntQ%3D%3D Occurrence Handle9396791

    CAS  PubMed  Google Scholar 

  35. JW Touchman A Dehejia O Chiba-Falek DE Cabin JR Schwartz et al. (2001) ArticleTitleHuman and mouse alpha-synuclein genes: comparative genomic sequence analysis and identification of a novel gene regulatory element. Genome Res 11 78–86 Occurrence Handle1:CAS:528:DC%2BD3MXmsVCrsg%3D%3D Occurrence Handle11156617

    CAS  PubMed  Google Scholar 

  36. JA Trofatter MM MacCollin JL Rutter JR Murrell MP Duyao et al. (1993) ArticleTitleA novel moesin-, ezrin-, radixin-like gene is a candidate for the neurofibromatosis 2 tumor supressor. Cell 72 791–800 Occurrence Handle1:CAS:528:DyaK3sXisFagt78%3D Occurrence Handle8453669

    CAS  PubMed  Google Scholar 

  37. WW Wasserman M Palumbo W Thompson JW Fickett CE Lawrence (2000) ArticleTitleHuman-mouse genome comparisons to locate regulatory sites. Nat Genet 26 225–228 Occurrence Handle10.1038/79965 Occurrence Handle1:CAS:528:DC%2BD3cXntlGmsL0%3D Occurrence Handle11017083

    Article  CAS  PubMed  Google Scholar 

  38. RH Waterston K Lindblad-Toh E Birney J Rogers JF Abril et al. (2002) ArticleTitleInitial sequencing and comparative analysis of the 1mouse genome. Nature 420 520–562 Occurrence Handle10.1038/nature01262 Occurrence Handle12466850

    Article  PubMed  Google Scholar 

  39. R Wellenreuther JA Kraus D Lenartz AG Menon J Schramm et al. (1995) ArticleTitleAnalysis of the neurofibromatosis 2 gene reveals molecular variants of meningioma. Am J Pathol 146 827–832 Occurrence Handle1:STN:280:ByqB3szkvFU%3D Occurrence Handle7717450

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Wyeth Wasserman for critical review of the manuscript. This work was supported by grants from the U.S. Army Medical Research and Material Command, award no. DAMD17-00-1-0536, the Swedish Cancer Foundation, the Swedish Research Council, Uppsala University to J.P. Dumanski, and NIH grant HG02153 to B.A. Roe.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan P. Dumanski.

Additional information

Sequence data from this article have been deposited with the EMBL/GenBank/DDBJ data library under accession numbers: Mouse: AC007550; Baboon: AY123427, AY123428, AY123429, AY123430, AY123431, AY123432, AY123433, AY123434, AY123435, AY123436, AY123437, AY123438, AY123439; Rat: AC127480. Present address (Carl E.G. Bruder): AstraZenenca R&D, Transgenics and Comparative Genomics, 43183 Mölndal, Sweden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hansson, C.M., Ali, H., Bruder, C.E. et al. Strong conservation of the human NF2 locus based on sequence comparison in five species . Mamm Genome 14, 526–536 (2003). https://doi.org/10.1007/s00335-003-3011-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-003-3011-3

Keywords

Navigation