Skip to main content
Log in

Insights from human/mouse genome comparisons

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

Large-scale public genomic sequencing efforts have provided a wealth of vertebrate sequence data poised to provide insights into mammalian biology. These include deep genomic sequence coverage of human, mouse, rat, zebrafish, and two pufferfish (Fugu rubripes and Tetraodon nigroviridis) (Aparicio et al. 2002; Lander et al. 2001; Venter et al. 2001; Waterston et al. 2002). In addition, a high-priority has been placed on determining the genomic sequence of chimpanzee, dog, cow, frog, and chicken (Boguski 2002). While only recently available, whole genome sequence data have provided the unique opportunity to globally compare complete genome contents. Furthermore, the shared evolutionary ancestry of vertebrate species has allowed the development of comparative genomic approaches to identify ancient conserved sequences with functionality. Accordingly, this review focuses on the initial comparison of available mammalian genomes and describes various insights derived from such analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

References

  1. BS Abrahams GM Mak ML Berry DL Palmquist JR Saionz et al. (2002) ArticleTitleNovel vertebrate genes and putative regulatory elements identified at kidney disease and NR2E1/fierce loci. Genomics 80 45–53 Occurrence Handle10.1006/geno.2002.6795 Occurrence Handle1:CAS:528:DC%2BD38XkslSjsbo%3D Occurrence Handle12079282

    Article  CAS  PubMed  Google Scholar 

  2. SF Altschul W Gish W Miller EW Myers DJ Lipman (1990) ArticleTitleBasic local alignment search tool. J Mol Biol 215 403–410 Occurrence Handle10.1006/jmbi.1990.9999 Occurrence Handle1:CAS:528:DyaK3MXitVGmsA%3D%3D Occurrence Handle2231712

    Article  CAS  PubMed  Google Scholar 

  3. S Aparicio S Brenner (1997) ArticleTitleHow good a model is the Fugu genome? Nature 387 140 Occurrence Handle10.1038/387140a0 Occurrence Handle1:CAS:528:DyaK2sXjtFyqsrg%3D

    Article  CAS  Google Scholar 

  4. S Aparicio A Morrison A Gould J Gilthorpe C Chaudhuri et al. (1995) ArticleTitleDetecting conserved regulatory elements with the model genome of the Japanese puffer fish, Fugu rubripes. Proc Natl Acad Sci USA 92 1684–1688 Occurrence Handle1:CAS:528:DyaK2MXktFWrs78%3D Occurrence Handle7878040

    CAS  PubMed  Google Scholar 

  5. S Aparicio J Chapman E Stupka N Putnam JM Chia et al. (2002) ArticleTitleWhole-genome shotgun assembly and analysis of the genome of Fugu rubripes. Science 297 1301–1310 Occurrence Handle10.1126/science.1072104 Occurrence Handle1:CAS:528:DC%2BD38Xms1ejtr8%3D Occurrence Handle12142439

    Article  CAS  PubMed  Google Scholar 

  6. S Bagheri-Fam C Ferraz J Demaille G Scherer D Pfeifer (2001) ArticleTitleComparative genomics of the SOX9 region in human and Fugu rubripes: conservation of short regulatory sequence elements within large intergenic regions. Genomics 78 73–82 Occurrence Handle10.1006/geno.2001.6648 Occurrence Handle1:CAS:528:DC%2BD3MXot1Kis78%3D Occurrence Handle11707075

    Article  CAS  PubMed  Google Scholar 

  7. JA Bailey Z Gu RA Clark K Reinert RV Samonte et al. (2002) ArticleTitleRecent segmental duplications in the human genome. Science 297 1003–1007 Occurrence Handle10.1126/science.1072047 Occurrence Handle1:CAS:528:DC%2BD38Xmt1Cktr4%3D Occurrence Handle12169732

    Article  CAS  PubMed  Google Scholar 

  8. MS Boguski (2002) ArticleTitleComparative genomics: the mouse that roared. Nature 420 515–516 Occurrence Handle10.1038/420515a Occurrence Handle1:CAS:528:DC%2BD38Xpt1Whsrc%3D Occurrence Handle12466847

    Article  CAS  PubMed  Google Scholar 

  9. N Bray I Dubchak L Pachter (2003) ArticleTitleAVID: A global alignment program. Genome Res 13 97–102 Occurrence Handle10.1101/gr.789803 Occurrence Handle1:CAS:528:DC%2BD3sXnvFGmuw%3D%3D Occurrence Handle12529311

    Article  CAS  PubMed  Google Scholar 

  10. S Brenner G Elgar R Sandford A Macrae B Venkatesh et al. (1993) ArticleTitleCharacterization of the pufferfish (Fugu) genome as a compact model vertebrate genome. Nature 366 265–268

    Google Scholar 

  11. O Couronne A Poliakov N Bray T Ishkhanov D Ryaboy et al. (2003) ArticleTitleStrategies and tools for whole-genome alignments. Genome Res 13 73–80 Occurrence Handle10.1101/gr.762503 Occurrence Handle1:CAS:528:DC%2BD3sXnvFGmtA%3D%3D Occurrence Handle12529308

    Article  CAS  PubMed  Google Scholar 

  12. P Dehal P Predki AS Olsen A Kobayashi P Folta et al. (2001) ArticleTitleHuman chromosome 19 and related regions in mouse: conservative and lineage-specific evolution. Science 293 104–111 Occurrence Handle10.1126/science.1060310 Occurrence Handle1:CAS:528:DC%2BD3MXltFCntbw%3D Occurrence Handle11441184

    Article  CAS  PubMed  Google Scholar 

  13. P Dehal Y Satou RK Campbell J Chapman B Degnan et al. (2002) ArticleTitleThe draft genome of Ciona intestinalis: insights into chordate and vertebrate origins. Science 298 2157–2167 Occurrence Handle10.1126/science.1080049 Occurrence Handle1:CAS:528:DC%2BD38XpsVSkt7o%3D Occurrence Handle12481130

    Article  CAS  PubMed  Google Scholar 

  14. AL Delcher A Phillippy J Carlton SL Salzberg (2002) ArticleTitleFast algorithms for large-scale genome alignment and comparison. Nucleic Acids Res 30 2478–2483 Occurrence Handle10.1093/nar/30.11.2478 Occurrence Handle12034836

    Article  PubMed  Google Scholar 

  15. I Dubchak M Brudno GG Loots L Pachter C Mayor et al. (2000) ArticleTitleActive conservation of noncoding sequences revealed by three-way species comparisons. Genome Res 10 1304–1306 Occurrence Handle10.1101/gr.142200 Occurrence Handle1:CAS:528:DC%2BD3cXms1yjtLk%3D Occurrence Handle10984448

    Article  CAS  PubMed  Google Scholar 

  16. L Duret P Bucher (1997) ArticleTitleSearching for regulatory elements in human noncoding sequences. Curr Opin Struct Biol 7 399–406

    Google Scholar 

  17. G Elgar (1996) ArticleTitleQuality not quantity: the pufferfish genome. Hum Mol Genet 5 1437–1442 Occurrence Handle1:CAS:528:DyaK28XlsFyltbY%3D Occurrence Handle8875249

    CAS  PubMed  Google Scholar 

  18. G Elgar R Sandford S Aparicio A Macrae B Venkatesh et al. (1996) ArticleTitleSmall is beautiful: comparative genomics with the pufferfish (Fugu rubripes). Trends Genet 12 145–150 Occurrence Handle10.1016/0168-9525(96)10018-4 Occurrence Handle1:CAS:528:DyaK28Xit1ensLY%3D Occurrence Handle8901419

    Article  CAS  PubMed  Google Scholar 

  19. K Endo H Yanagi J Araki C Hirano . Yamakawa-Kobayashi (2002) ArticleTitleAssociation found between the promoter region polymorphism in the apolipoprotein A-V gene and the serum triglyceride level in Japanese school children. Hum Genet 111 570–572 Occurrence Handle10.1007/s00439-002-0825-0 Occurrence Handle1:CAS:528:DC%2BD3sXhvFCisL4%3D Occurrence Handle12436249

    Article  CAS  PubMed  Google Scholar 

  20. P Gilligan S Brenner B Venkatesh (2002) ArticleTitleFugu and human sequence comparison identifies novel human genes and conserved non-coding sequences. Gene 294 35 Occurrence Handle10.1016/S0378-1119(02)00793-X Occurrence Handle1:CAS:528:DC%2BD38XmvF2qsbg%3D Occurrence Handle12234665

    Article  CAS  PubMed  Google Scholar 

  21. B Gottgens LM Barton JG Gilbert AJ Bench MJ Sanchez et al. (2000) ArticleTitleAnalysis of vertebrate SCL loci identifies conserved enhancers. Nat Biotechnol 18 181–186 Occurrence Handle10.1038/72635 Occurrence Handle1:CAS:528:DC%2BD3cXhtVOlsrg%3D Occurrence Handle10657125

    Article  CAS  PubMed  Google Scholar 

  22. B Gottgens JG Gilbert LM Barton D Grafham J Rogers et al. (2001) ArticleTitleLong-range comparison of human and mouse SCL loci: localized regions of sensitivity to restriction endonucleases correspond precisely with peaks of conserved noncoding sequences. Genome Res 11 87–97 Occurrence Handle10.1101/gr.153001 Occurrence Handle1:CAS:528:DC%2BD3MXmsVCrsw%3D%3D Occurrence Handle11156618

    Article  CAS  PubMed  Google Scholar 

  23. B Gottgens LM Barton MA Chapman AM Sinclair B Knudsen et al. (2002) ArticleTitleTranscriptional regulation of the stem cell leukemia gene (SCL)–comparative analysis of five vertebrate SCL loci. Genome Res 12 749–759 Occurrence Handle10.1101/gr.45502 Occurrence Handle1:CAS:528:DC%2BD38XjvFSgtL8%3D Occurrence Handle11997341

    Article  CAS  PubMed  Google Scholar 

  24. DL Gumucio DA Shelton W Zhu D Millinoff T Gray et al. (1996) ArticleTitleEvolutionary strategies for the elucidation of cis and trans factors that regulate the developmental switching programs of the beta-like globin genes. Mol Phylogenet Evol 5 18–32 Occurrence Handle10.1006/mpev.1996.0004 Occurrence Handle1:CAS:528:DyaK28XitVyrsb4%3D Occurrence Handle8673285

    Article  CAS  PubMed  Google Scholar 

  25. RC Hardison (2000) ArticleTitleConserved noncoding sequences are reliable guides to regulatory elements. Trends Genet 16 369–372 Occurrence Handle1:CAS:528:DC%2BD3cXmtlOnsL0%3D Occurrence Handle10973062

    CAS  PubMed  Google Scholar 

  26. RC Hardison J Oeltjen W Miller (1997) ArticleTitleLong human-mouse sequence alignments reveal novel regulatory elements: a reason to sequence the mouse genome. Genome Res 7 959–966 Occurrence Handle1:CAS:528:DyaK2sXntFaitrs%3D Occurrence Handle9331366

    CAS  PubMed  Google Scholar 

  27. SB Hedges S Kumar (2002) ArticleTitleGenomics. Vertebrate genomes compared. Science 297 1283–1285 Occurrence Handle10.1126/science.1076231 Occurrence Handle1:CAS:528:DC%2BD38Xms1Slu7k%3D Occurrence Handle12193771

    Article  CAS  PubMed  Google Scholar 

  28. L Hood L Rowen BF Koop (1995) ArticleTitleHuman and mouse T-cell receptor loci: genomics, evolution, diversity, and serendipity. Ann N Y Acad Sci 758 390–412 Occurrence Handle1:CAS:528:DyaK2MXptVSitr4%3D Occurrence Handle7625706

    CAS  PubMed  Google Scholar 

  29. GF How B Venkatesh S Brenner (1996) ArticleTitleConserved linkage between the puffer fish (Fugu rubripes) and human genes for platelet-derived growth factor receptor and macrophage colony-stimulating factor receptor. Genome Res 6 1185–1191 Occurrence Handle1:CAS:528:DyaK2sXkslCk Occurrence Handle8973913

    CAS  PubMed  Google Scholar 

  30. TJ Hudson DM Church S Greenaway H Nguyen A Cook et al. (2001) ArticleTitleA radiation hybrid map of mouse genes. Nat Genet 29 201–205 Occurrence Handle10.1038/ng1001-201 Occurrence Handle1:CAS:528:DC%2BD3MXnsFKgu7k%3D Occurrence Handle11586302

    Article  CAS  PubMed  Google Scholar 

  31. N Jareborg R Durbin (2000) ArticleTitleAlfresco—a workbench for comparative genomic sequence analysis. Genome Res 10 1148–1157 Occurrence Handle10.1101/gr.10.8.1148 Occurrence Handle1:CAS:528:DC%2BD3cXmtFelsrk%3D Occurrence Handle10958633

    Article  CAS  PubMed  Google Scholar 

  32. G Jimenez KB Gale T Enver (1992) ArticleTitleThe mouse beta-globin locus control region: hypersensitive sites 3 and 4. Nucleic Acids Res 20 5797–5803 Occurrence Handle1:CAS:528:DyaK3sXit1Kqt7g%3D Occurrence Handle1454540

    CAS  PubMed  Google Scholar 

  33. WJ Kent CW Sugnet TS Furey KM Roskin TH Pringle et al. (2002) ArticleTitleThe human genome browser at UCSC. Genome Res 12 996–1006 Occurrence Handle1:CAS:528:DC%2BD38Xks12hs7s%3D Occurrence Handle12045153

    CAS  PubMed  Google Scholar 

  34. C Kimura N Takeda M Suzuki M Oshimura S Aizawa et al. (1997) ArticleTitleCis-acting elements conserved between mouse and pufferfish Otx2 genes govern the expression in mesencephalic neural crest cells. Development 124 3929–3941 Occurrence Handle1:CAS:528:DyaK2sXnt12gs7k%3D Occurrence Handle9374391

    CAS  PubMed  Google Scholar 

  35. BF Koop L Hood (1994) ArticleTitleStriking sequence similarity over almost 100 kilobases of human and mouse T-cell receptor DNA. Nat Genet 7 48–53 Occurrence Handle1:CAS:528:DyaK2cXksFWitrk%3D Occurrence Handle8075639

    CAS  PubMed  Google Scholar 

  36. ES Lander LM Linton B Birren C Nusbaum MC Zody et al. (2001) ArticleTitleInitial sequencing and analysis of the human genome. Nature 409 860–921 Occurrence Handle1:CAS:528:DC%2BD3MXhsFCjtLc%3D Occurrence Handle11237011

    CAS  PubMed  Google Scholar 

  37. G Lennon C Auffray M Polymeropoulos MB Soares (1996) ArticleTitleThe I.M.A.G.E. Consortium: an integrated molecular analysis of genomes and their expression. Genomics 33 151–152 Occurrence Handle1:CAS:528:DyaK28XisFSmsbc%3D Occurrence Handle8617505

    CAS  PubMed  Google Scholar 

  38. WH Li DL Ellsworth J Krushkal BH Chang D Hewett-Emmett (1996) ArticleTitleRates of nucleotide substitution in primates and rodents and the generation-time effect hypothesis. Mol Phylogenet Evol 5 182–187 Occurrence Handle1:CAS:528:DyaK28XitVyrsbo%3D Occurrence Handle8673286

    CAS  PubMed  Google Scholar 

  39. GG Loots RM Locksley CM Blankespoor ZE Wang W Miller et al. (2000) ArticleTitleIdentification of a coordinate regulator of interleukins 4, 13, and 5 by cross-species sequence comparisons. Science 288 136–140

    Google Scholar 

  40. JB Margot GW Demers RC Hardison (1989) ArticleTitleComplete nucleotide sequence of the rabbit beta-like globin gene cluster. Analysis of intergenic sequences and comparison with the human beta-like globin gene cluster. J Mol Biol 205 15–40 Occurrence Handle1:CAS:528:DyaL1MXhsV2js7g%3D Occurrence Handle2486295

    CAS  PubMed  Google Scholar 

  41. C Mayor M Brudno JR Schwartz A Poliakov EM Rubin et al. (2000) ArticleTitleVISTA: visualizing global DNA sequence alignments of arbitrary length. Bioinformatics 16 1046–1047 Occurrence Handle10.1093/bioinformatics/16.11.1046 Occurrence Handle1:CAS:528:DC%2BD3MXptlOltw%3D%3D Occurrence Handle11159318

    Article  CAS  PubMed  Google Scholar 

  42. T Nabika S Nasreen S Kobayashi J Masuda (2002) ArticleTitleThe genetic effect of the apolipoprotein AV gene on the serum triglyceride level in Japanese. Atherosclerosis 165 201–204 Occurrence Handle10.1016/S0021-9150(02)00252-6 Occurrence Handle1:CAS:528:DC%2BD38Xotl2msLw%3D Occurrence Handle12417270

    Article  CAS  PubMed  Google Scholar 

  43. JH Nadeau BA Taylor (1984) ArticleTitleLengths of chromosomal segments conserved since divergence of man and mouse. Proc Natl Acad Sci USA 81 814–818 Occurrence Handle1:CAS:528:DyaL2cXhsFWrurk%3D Occurrence Handle6583681

    CAS  PubMed  Google Scholar 

  44. K Osoegawa M Tateno PY Woon E Frengen AG Mammoser et al. (2000) ArticleTitleBacterial artificial chromosome libraries for mouse sequencing and functional analysis. Genome Res 10 116–128 Occurrence Handle1:CAS:528:DC%2BD3cXpsl2jtQ%3D%3D Occurrence Handle10645956

    CAS  PubMed  Google Scholar 

  45. K Osoegawa AG Mammoser C Wu E Frengen C Zeng et al. (2001) ArticleTitleA bacterial artificial chromosome library for sequencing the complete human genome. Genome Res 11 483–496 Occurrence Handle10.1101/gr.169601 Occurrence Handle1:CAS:528:DC%2BD3MXhvVOntrY%3D Occurrence Handle11230172

    Article  CAS  PubMed  Google Scholar 

  46. LA Pennacchio EM Rubin (2001) ArticleTitleGenomic strategies to identify mammalian regulatory sequences. Nat Rev Genet 2 100–109 Occurrence Handle10.1038/35052548 Occurrence Handle1:CAS:528:DC%2BD3MXisVGjtbg%3D Occurrence Handle11253049

    Article  CAS  PubMed  Google Scholar 

  47. LA Pennacchio M Olivier JA Hubacek JC Cohen DR Cox et al. (2001) ArticleTitleAn apolipoprotein influencing triglycerides in humans and mice revealed by comparative sequencing. Science 294 169–173

    Google Scholar 

  48. LA Pennacchio M Olivier JA Hubacek RM Krauss EM Rubin et al. (2002) ArticleTitleTwo independent apolipoprotein A5 haplotypes influence human plasma triglyceride levels. Hum Mol Genet 11 3031–3038 Occurrence Handle10.1093/hmg/11.24.3031 Occurrence Handle1:CAS:528:DC%2BD38XosFOgs7c%3D Occurrence Handle12417524

    Article  CAS  PubMed  Google Scholar 

  49. J Ribalta L Figuera J Fernandez-Ballart E Vilella M Castro Cabezas et al. (2002) ArticleTitleNewly identified apolipoprotein AV gene predisposes to high plasma triglycerides in familial combined hyperlipidemia. Clin Chem 48 1597–1600 Occurrence Handle1:CAS:528:DC%2BD38XmslSqu7Y%3D Occurrence Handle12194944

    CAS  PubMed  Google Scholar 

  50. DH Rowitch Y Echelard PS Danielian K Gellner S Brenner (1998) ArticleTitleIdentification of an evolutionarily conserved 110 base-pair cis-acting regulatory sequence that governs Wnt-1 expression in the murine neural plate. Development 125 2735–2746 Occurrence Handle1:CAS:528:DyaK1cXlsV2mu7c%3D Occurrence Handle9636087

    CAS  PubMed  Google Scholar 

  51. S Schwartz Z Zhang KA Frazer A Smit C Riemer et al. (2000) ArticleTitlePipMaker—a web server for aligning two genomic DNA sequences. Genome Res 10 577–586 Occurrence Handle1:CAS:528:DC%2BD3cXjtVKrsLg%3D Occurrence Handle10779500

    CAS  PubMed  Google Scholar 

  52. S Schwartz WJ Kent A Smit Z Zhang R Baertsch et al. (2003) ArticleTitleHuman-mouse alignments with BLASTZ. Genome Res 13 103–107 Occurrence Handle10.1101/gr.809403 Occurrence Handle1:CAS:528:DC%2BD3sXnvFGlsg%3D%3D Occurrence Handle12529312

    Article  CAS  PubMed  Google Scholar 

  53. PJ Talmud E Hawe S Martin M Olivier GJ Miller et al. (2002) ArticleTitleRelative contribution of variation within the APOC3/A4/A5 gene cluster in determining plasma triglycerides. Hum Mol Genet 11 3039–3046 Occurrence Handle10.1093/hmg/11.24.3039 Occurrence Handle1:CAS:528:DC%2BD38XosFOgsL4%3D Occurrence Handle12417525

    Article  CAS  PubMed  Google Scholar 

  54. B Venkatesh SL Si-Hoe D Murphy S Brenner (1997) ArticleTitleTransgenic rats reveal functional conservation of regulatory controls between the Fugu isotocin and rat oxytocin genes. Proc Natl Acad Sci USA 94 12462–12466 Occurrence Handle10.1073/pnas.94.23.12462 Occurrence Handle1:CAS:528:DyaK2sXns1ylsbY%3D Occurrence Handle9356472

    Article  CAS  PubMed  Google Scholar 

  55. B Venkatesh P Gilligan S Brenner (2000) ArticleTitleFugu: a compact vertebrate reference genome. FEBS Lett 476 3–7 Occurrence Handle10.1016/S0014-5793(00)01659-8 Occurrence Handle1:CAS:528:DC%2BD3cXktlKqsLo%3D Occurrence Handle10878239

    Article  CAS  PubMed  Google Scholar 

  56. JC Venter MD Adams EW Myers PW Li RJ Mural et al. (2001) ArticleTitleThe sequence of the human genome. Science 291 1304–1351 Occurrence Handle1:CAS:528:DC%2BD3MXhtlSgsbo%3D Occurrence Handle11181995

    CAS  PubMed  Google Scholar 

  57. RH Waterston K Lindblad-Toh E Birney J Rogers JF Abril et al. (2002) ArticleTitleInitial sequencing and comparative analysis of the mouse genome. Nature 420 520–562 Occurrence Handle10.1038/nature01262 Occurrence Handle12466850

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the NIH-NHLBI Programs for Genomic Application Grant HL66681 through the U.S. Department of Energy under contract No. DE-AC03-76SF00098.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Len A. Pennacchio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pennacchio, L.A. Insights from human/mouse genome comparisons . Mamm Genome 14, 429–436 (2003). https://doi.org/10.1007/s00335-002-4001-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-002-4001-1

Navigation