Abstract
Low initial response to alcohol has been shown to be among the best predictors of development of alcoholism. A similar phenotypic measure, difference in initial sensitivity to ethanol, has been used for the genetic selection of two mouse strains, the Inbred Long-Sleep (ILS) and Inbred Short-Sleep (ISS) mice, and for the subsequent identification of four quantitative trait loci (QTLs) for alcohol sensitivity. We now report the application of high throughput comparative gene sequencing in the search for genes underlying these four QTLs. To carry out this search, over 1.7 million bases of comparative DNA sequence were generated from 68 candidate genes within the QTL intervals, corresponding to a survey of over 36,000 amino acids. Eight central nervous system genes, located within these QTLs, were identified that contain a total of 36 changes in protein coding sequence. Some of these coding variants are likely to contribute to the phenotypic variation between ILS/ISS animals, including sensitivity to alcohol, providing specific new genetic targets potentially important to the neuronal actions of alcohol.
Similar content being viewed by others
Author information
Authors and Affiliations
Additional information
Received: 14 February 2001 / Accepted: 4 April 2001
Rights and permissions
About this article
Cite this article
Ehringer, M., Thompson, J., Conroy, O. et al. High-throughput sequence identification of gene coding variants within alcohol-related QTLs. Mammalian Genome 12, 657–663 (2001). https://doi.org/10.1007/s00335-001-1001-x
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00335-001-1001-x