Skip to main content
Log in

A new tool for formalised vegetation reconstruction from (sub)fossil records – the FEVER Index

  • Original Article
  • Published:
Vegetation History and Archaeobotany Aims and scope Submit manuscript

Abstract

Plant macro-remains provide valuable environmental information of the past, but reconstruction of past vegetation is challenging, because a macrofossil sample may include material from various habitats and also because its species composition is biased and incomplete. Therefore, we aimed to propose, test and evaluate an objective tool for data reconstruction in archaeobotany and palaeoecology. Our Fossil assEmblage VEgetation Reconstruction Index (FEVER Index) indicates relative probabilities that particular taxa in a fossil assemblage come from respective vegetation types. In contrast to the Frequency Positive Fidelity Index (FPFI) used for modern vegetation classification, the FEVER Index emphasises the importance of diagnostic species. The comparison between the FEVER and FPFI indices, when they are applied to a large dataset of modern vegetation plots, has shown that the FEVER Index has greater classification accuracy. In the case where taxonomic data were reduced to genera only, the efficiency of the FEVER Index was even higher than FPFI. This shows that the FEVER Index is more accurate when applied to incomplete fossil data, but only when there are some diagnostic species still present. We also examined the similarity between modern vegetation and corresponding seed bank data. Wetland habitats, such as calcareous fens and periodically exposed riverbeds showed high similarity between the vegetation and the seed banks because of the local origin of the seed bank material. Lower similarity was, however, detected in the case of small pools in the upper reaches of the river Lužnice, the seed bank of which included not only aquatic vegetation but also plants from terrestrial habitats nearby, transported by flowing water. Finally, we provide two examples of applying the FEVER Index to fossil data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Behre K-E, Jacomet S (1991) The ecological interpretation of archaeobotanical data. In: van Zeist W, Wasylikowa K, Behre K-E (eds) Progress in old world palaeoethnobotany. Balkema, Rotterdam, pp 81–108

    Google Scholar 

  • Bernardová A, Novák J, Vránová V (2017) The prehistoric wetland site of Náklo (Moravia, Czech Republic) – a unique piece of history. Interdiscip Archaeol 8:9–16. https://doi.org/10.24916/iansa.2017.1.1

    Article  Google Scholar 

  • Birks HH (2000) Aquatic macrophyte vegetation development in Kråkenes Lake, western Norway, during the late-glacial and early-holocene. J Paleolimnol 23:7–19

    Article  Google Scholar 

  • Birks HH (2007) Plant macrofossil introduction. In: Elias SA (ed) Encyclopedia of Quaternary Science, vol 3. Elsevier, Amsterdam, pp 2,266–2,288. https://doi.org/10.1016/B0-444-52747-8/00215-5

    Chapter  Google Scholar 

  • Birks HJB (2014) Challenges in the presentation and analysis of plant-macrofossil stratigraphical data. Veget Hist Archaeobot 23:309–330. https://doi.org/10.1007/s00334-013-0430-2

    Article  Google Scholar 

  • Birks HH, Birks HJB (2005) Reconstructing Holocene climates from pollen and plant macrofossils. In: Mackay A, Battarbee R, Birks J, Oldfield F (eds) Global change in the Holocene. Routledge, London, pp 342–357

    Google Scholar 

  • Bogaard A (2004) Neolithic farming in central Europe: an archaeobotanical study of crop husbandry practices. Routledge, London

    Book  Google Scholar 

  • Braun-Blanquet J (1928) Pflanzensoziologie: Grundzüge Der Vegetationskunde. Springer, Berlin

    Google Scholar 

  • Braun-Blanquet J (1964) Pflanzensoziologie: Grundzüge Der Vegetationskunde, 3rd edn. Springer, Vienna

    Book  Google Scholar 

  • Brinkkemper O, Schepers M, van Tongeren O (2023) PALAEOASSOCIA as a methodological tool for phytosociological analyses is further developed. Veget Hist Archaeobot 33. https://doi.org/10.1007/s00334-023-00928-y

  • Brisse H, de Ruffray P, Grandjouan G, Hoff M (1995) The phytosociological database SOPHY: part I: calibration of indicator plants, part II: socio-ecological classification of the relevés. Ann Bot 53:177–190

    Google Scholar 

  • Bruelheide H (1995) Die Grünlandgesellschaften des Harzes und ihre Standortsbedingungen. Mit einem Beitrag zum Gliederungsprinzip auf der Basis von statistisch ermittelten Artengruppen. (Diss Bot 244) Cramer, Berlin

  • Bruelheide H (2000) A new measure of fidelity and its application to defining species groups. J Veg Sci 11:167–178

    Article  Google Scholar 

  • Cappers RTJ (1995) A palaeoecological model for the interpretation of wild plant species. Veget Hist Archaeobot 4:249–257

    Article  Google Scholar 

  • Charles M, Jones G, Hodgson JG (1997) FIBS in archaeobotany: functional interpretation of weed floras in relation to husbandry practices. J Archaeol Sci 24:1151–1161

    Article  Google Scholar 

  • Chytrý M (ed) (2007–2013) Vegetace České republiky 1–4 (Vegetation of the Czech Republic 1–4). Academia, Praha (in Czech, with English summaries)

  • Chytrý M (ed) (2007) Vegetace České republiky: 1. Travinná a keříčková vegetace (Vegetation of the Czech Republic: 1. Grassland and Heathland Vegetation). Academia, Praha (in Czech, with English summary)

  • Chytrý M, Rafajová M (2003) Czech National Phytosociological database: basic statistics of the available vegetation-plot data. Preslia 75:1–15

    Google Scholar 

  • Chytrý M, Tichý L (2003) Diagnostic, constant and dominant species of vegetation classes and alliances of the Czech Republic: a statistical revision. (Folia 108) Masaryk University, Brno

  • Chytrý M, Tichý L (2018) National vegetation classification of the Czech Republic: a summary of the approach. Phytocoenologia 48:121–131. https://doi.org/10.1127/phyto/2017/0184

    Article  Google Scholar 

  • Chytrý M, Tichý L, Holt J, Botta-Dukát Z (2002) Determination of diagnostic species with statistical fidelity measures. J Veg Sci 13:79–90. https://doi.org/10.1111/j.1654-1103.2002.tb02025.x

    Article  Google Scholar 

  • Chytrý M, Kučera T, Kočí M, Grulich V, Lustyk P (2010) Habitat catalogue of the Czech Republic. Agentura ochrany přírody a krajiny ČR (AOPK), Prague

    Google Scholar 

  • Chytrý M, Tichý L, Hennekens SM et al (2020) EUNIS Habitat classification: Expert system, characteristic species combinations and distribution maps of European habitats. Appl Veg Sci 23:648–675. https://doi.org/10.1111/avsc.12519

    Article  Google Scholar 

  • Colledge S, Conolly J, Shennan S (2005) The evolution of neolithic farming from SW Asian origins to NW European limits. Eur J Archaeol 8:137–156. https://doi.org/10.1177/1461957105066937

    Article  Google Scholar 

  • Dieffenbacher-Krall AC (2007) Plant macrofossil methods and studies: surface samples, taphonomy, representation. In: Elias SA (ed) Encyclopedia of Quaternary Science, vol 3. Elsevier, Amsterdam. 2,367–2,374

    Google Scholar 

  • Dierschke H (1994) Pflanzensoziologie. Ulmer, Stuttgart

    Google Scholar 

  • Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366

    Google Scholar 

  • Eide W, Birks HH, Bigelow NH, Peglar SM, Birks HJB (2006) Holocene forest development along the Setesdal valley, southern Norway, reconstructed from macrofossil and pollen evidence. Veget Hist Archaeobot 15:65–85. https://doi.org/10.1007/s00334-005-0025-7

    Article  Google Scholar 

  • Ellenberg H, Leuschner C (2010) Zeigerwerte Der Pflanzen Mitteleuropas (Indicator values of vascular plants in Central Europe). In: Ellenberg H, Leuschner C (eds) Vegetation Mitteleuropas mit den Alpen (Vegetation of Central Europe including the Alps), 6th edn. Ulmer, Stuttgart. https://doi.org/10.36198/9783825281045

    Chapter  Google Scholar 

  • Ewald J (2001) Der Beitrag pflanzensoziologischer Datenbanken Zur vegetationsökologischen Forschung. Ber Reinh Tüxen-Ges 13:53–69

    Google Scholar 

  • Gałka M, Apolinarska K (2014) Climate change, vegetation development, and lake level fluctuations in Lake Purwin (NE Poland) during the last 8600 cal. BP based on a high-resolution plant macrofossil record and stable isotope data (δ13C and δ18O). Quat Int 328–329:213–225

    Article  Google Scholar 

  • Gałka M, Tobolski K, Lamentowicz Ł, Ersek V, Jassey VEJ, van der Knaap WO, Lamentowicz M (2017) Unveiling exceptional Baltic bog ecohydrology, autogenic succession and climate change during the last 2000 years in CE Europe using replicate cores, multi-proxy data and functional traits of testate amoebae. Quat Sci Rev 156:90–106. https://doi.org/10.1016/j.quascirev.2016.11.034

    Article  Google Scholar 

  • Gégout J-C, Coudun C (2012) The right relevé in the right vegetation unit: a new typicality index to reproduce expert judgement with an automatic classification programme. J Veg Sci 23:24–32. https://doi.org/10.1111/j.1654-1103.2011.01337.x

    Article  Google Scholar 

  • Hájek M, Dítě D, Horsáková V et al (2020) Towards the pan-european bioindication system: assessing and testing updated hydrological indicator values for vascular plants and bryophytes in mires. Ecol Indic 116:106527. https://doi.org/10.1016/j.ecolind.2020.106527

    Article  Google Scholar 

  • Hegedüšová Vantarová K, Škodová I (eds) (2014) Rastlinné spoločenstvá Slovenska. 5. Travinno-bylinná vegetácia (plant communities of Slovakia. 5. Grassland vegetation). Veda, Bratislava

    Google Scholar 

  • Hill MO (1989) Computerized matching of relevés and association tables, with an application to the British National Vegetation classification. Vegetatio 83:187–194

    Article  Google Scholar 

  • Jonášová B (2017) Srovnání semenné banky s recentní vegetací různých stanovišť v nivě řeky Lužnice [Comparison of the seed bank with the current vegetation of different habitats in the Lužnice river floodplain]. Master thesis, University of South Bohemia in České Budějovice, Czech Republic

  • Jones G (2002) Weed ecology as a method for the archaeobotanical recognition of crop husbandry practices. Acta Palaeobot 42:185–193

    Google Scholar 

  • Knollová I, Chytrý M, Tichý L, Hájek O (2005) Stratified resampling of phytosociological databases: some strategies for obtaining more representative data sets for classification studies. J Veg Sci 16:479–486. https://doi.org/10.1111/j.1654-1103.2005.tb02388.x

    Article  Google Scholar 

  • Knörzer K-H (1984) Veränderungen Der Unkrautvegetation auf rheinischen Bauernhöfen Seit Der Römerzeit. Bonner Jahrbücher 184:479–503

    Google Scholar 

  • Kočí M, Chytrý M, Tichý L (2003) Formalized reproduction of an expert-based phytosociological classification: a case study of subalpine tall-forb vegetation. J Veg Sci 14:601–610. https://doi.org/10.1111/j.1654-1103.2003.tb02187.x

    Article  Google Scholar 

  • Körber-Grohne U (1990) Gramineen und Grünlandvegetationen vom Neolithikum bis zum Mittelalter in Mitteleuropa. (Bibliotheca Botanica 139) Schweizerbart’sche Verlagsbuchhandlung, Stuttgart

  • Kúr P, Píšová S, Tremetsberger K et al (2021) Ecology and genetics of Cyperus fuscus in central Europe – A model for ephemeral wetland plant research and conservation. Water 13:1277. https://doi.org/10.3390/w13091277

    Article  Google Scholar 

  • Kuzemko AA (2012) Using sociological groups and cocktail method for the classification of meadow vegetation in the forest and forest-steppe zones of the flatland part of Ukraine. Ukr Bot Zh 69:190–202

    Google Scholar 

  • Kuzemko AA, Didukh Y, Onyshchenko V, Boruskevych L (2018) National habitat catalogue of Ukraine. FOP Klymenko Yu.Ya, Kiev

    Google Scholar 

  • Magyari E, Buczkó K, Jakab G, Braun M, Pál Z, Karátson D, Pap I (2009) Palaeolimnology of the last crater lake in the Eastern Carpathian Mountains: a multiproxy study of Holocene hydrological changes. Hydrobiologia 631:29–63. https://doi.org/10.1007/s10750-009-9801-1

    Article  CAS  Google Scholar 

  • Marcenò C, Guarino R, Loidi J et al (2018) Classification of European and Mediterranean coastal dune vegetation. Appl Veg Sci 21:533–559. https://doi.org/10.1111/avsc.12379

    Article  Google Scholar 

  • Pokorná A, Houfková P, Novák J et al (2014) The oldest Czech fishpond discovered? An interdisciplinary approach to reconstruction of local vegetation in mediaeval Prague suburbs. Hydrobiologia 730:191–213. https://doi.org/10.1007/s10750-014-1837-1

    Article  CAS  Google Scholar 

  • Potůčková A, Hájková P, Žáčková P, Petr L, Grygar TM, Weiser M (2018) Spatiotemporal heterogeneity of the palaeoecological record in a large temperate palaeolake, Šúr, southwest Slovakia: comparison of pollen, macrofossil and geochemical data. Palaeogeogr Palaeoclimatol Palaeoecol 489:52–63. https://doi.org/10.1016/j.palaeo.2017.09.010

    Article  Google Scholar 

  • Preislerová Z, Jiménez-Alfaro B, Mucina L et al (2022) Distribution maps of vegetation alliances in Europe. Appl Veg Sci 25:e12642. https://doi.org/10.1111/avsc.12642

    Article  Google Scholar 

  • Roleček J, Svitavská Svobodová H, Jamrichová E et al (2020) Conservation targets from the perspective of a palaeoecological reconstruction: the case study of Dářko peat bog in the Czech Republic. Preslia 92:87–114. https://doi.org/10.23855/preslia.2020.087

    Article  Google Scholar 

  • Schaminée JHJ, Hennekens SM, Ozinga WA (2012) The Dutch National Vegetation Database. Biodivers Ecol 4:201–209. https://doi.org/10.7809/b-e.00077

    Article  Google Scholar 

  • Schepers M, Scheepens JF, Cappers RTJ, van Tongeren OFR, Raemaekers DCM, Bekker RM (2013) An objective method based on assemblages of subfossil plant macro-remains to reconstruct past natural vegetation: a case study at Swifterbant, the Netherlands. Veget Hist Archaeobot 22:243–255. https://doi.org/10.1007/s00334-012-0370-2

    Article  Google Scholar 

  • Tichý L (2005) New similarity indices for the assignment of relevés to the vegetation units of an existing phytosociological classification. Plant Ecol 179:67–72. https://doi.org/10.1007/s11258-004-5798-8

    Article  Google Scholar 

  • Tichý L, Chytrý M (2006) Statistical determination of diagnostic species for site groups of unequal size. J Veg Sci 17:809–818. https://doi.org/10.1111/j.1654-1103.2006.tb02504.x

    Article  Google Scholar 

  • Tichý L, Chytrý M (2019) Probabilistic key for identifying vegetation types in the field: a new method and android application. J Veg Sci 30:1:035–1038. https://doi.org/10.1111/jvs.12799

    Article  Google Scholar 

  • Tichý L, Axmanová I, Dengler J et al (2023) Ellenberg-type indicator values for European vascular plant species. J Veg Sci 34:e13168. https://doi.org/10.1111/jvs.13168

    Article  Google Scholar 

  • Van der Veen M (1992) Crop husbandry regimes: an archaeobotanical study of farming in northern England, 1000 BC–AD 500. J.R. Collis, Sheffield

    Google Scholar 

  • Van Tongeren O, Gremmen N, Hennekens S (2008) Assignment of relevées to pre-defined classes by supervised clustering of plant communities using a new composite index. J Veg Sci 19:525–536

    Article  Google Scholar 

  • Westhoff V, Van der Maarel E (1978) The Braun-Blanquet approach. In: Whittaker RH (ed) Classification of plant communities. Springer, Dordrecht, pp 287–399

    Chapter  Google Scholar 

  • Whittaker RH (1962) Classification of natural communities. Bot Rev 28:1–239

    Article  Google Scholar 

  • Willcox G (2012) Searching for the origins of arable weeds in the Near East. Veget Hist Archaeobot 21:163–167. https://doi.org/10.1007/s00334-011-0307-1

    Article  Google Scholar 

  • Willerding U (1986) Zur Geschichte Der Unkräuter Mitteleuropas. Wachholtz, Neumünster

    Google Scholar 

  • Willner W, Tichý L, Chytrý M (2009) Effects of different fidelity measures and contexts on the determination of diagnostic species. J Veg Sci 20:130–137. https://doi.org/10.1111/j.1654-1103.2009.05390.x

    Article  Google Scholar 

  • Wood SN (2017) Generalized additive models: an introduction with R, 2nd edn. Chapman and Hall/CRC, Boca Raton

    Book  Google Scholar 

Download references

Acknowledgements

We would like to thank Jitka Klimešová and Jana Martínková, who helped with the seed bank study in the Lužnice floodplain. We also thank two anonymous reviewers for improving the manuscript.

Funding

The research was supported by Grantová Agentura České Republiky (Czech Science Foundation), project No. GA23-05132 S. PH, AK, AŠ, JJ and KŠ were partially supported by the long-term developmental project of Akademie věd České Republiky (Czech Academy of Sciences) (RVO 67985939). AP was supported by long-term research development project RVO 67985912 (Czech Academy of Sciences).

Author information

Authors and Affiliations

Authors

Contributions

LT created the FEVER index, made all calculations and created all diagrams. AP, PH and LT contributed in equal amounts to the writing of the text and should be regarded as the main authors. AB, BJ, AK, JJ and KŠ provided seed bank studies. PS and AŠ did field sampling for fossil data analyses (PS for Rybnik fish pond archaeological site and AŠ for Šúr former lake). AP, PH and LT wrote the manuscript with contributions from all authors.

Corresponding author

Correspondence to Adéla Pokorná.

Ethics declarations

Competing interests

The authors have no relevant competing financial or non-financial interests to declare that are directly or indirectly related to the work submitted for publication.

Additional information

Communicated by F. Bittmann.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pokorná, A., Hájková, P., Bernardová, A. et al. A new tool for formalised vegetation reconstruction from (sub)fossil records – the FEVER Index. Veget Hist Archaeobot (2024). https://doi.org/10.1007/s00334-024-00996-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00334-024-00996-8

Keywords

Navigation