Skip to main content
Log in

Were prehistoric cereal fields in western Norway manured? Evidence from stable isotope values (δ15N) of charred modern and fossil cereals

  • Original Article
  • Published:
Vegetation History and Archaeobotany Aims and scope Submit manuscript

Abstract

Charred cereal grains from archaeological contexts in western Norway were selected for stable carbon and nitrogen isotope analysis. Single grain analysis was used on 76 grains from 16 sites covering the Late Neolithic (2300–1800 bce) to the Middle Ages (1030–1537 ce). The cereals from archaeological contexts (postholes and agricultural layers in soil profiles) indicate increasing δ15N values with time. In the Late Neolithic–Early Bronze Age δ15N values for Hordeum vulgare var. nudum range from 1.2 to 8.9‰, and in the Early Iron Age the values range from 0.7 to 13.6‰. The values of Hordeum vulgare var. vulgare range from 4.3 to 6.1‰ in the Pre-Roman Iron Age to 3.3–8.7‰ in the Middle Ages. The δ15N values of fossil cereals were compared to modern cereals grown in test-plots in western and north-western Norway. The results from the modern cereals show a clear difference between cereals grown in low level and high-level manured fields. Hordeum vulgare var. nudum dated to the Late Neolithic, show δ15N values mostly falling within the range of modern day ecologically grown cereals with a low-level manuring regime. Cereals from later time-periods show higher δ15N values equivalent to modern day moderate- to high-level manuring regimes. Our results indicate manuring and possible use of marine resources and the existence of permanent fields from the Late Bronze Age (1200 bce) onwards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aguilera M, Ferrio JP, Pérez G, Araus JL, Voltas J (2012) Holocene changes in precipitation seasonality in the western Mediterranean Basin: a multi-species approach using δ13C of archaeobotanical remains. J Quat Sci 27:192–202

    Article  Google Scholar 

  • Araus JL, Febrero A, Buxó R et al (1997) Identification of ancient irrigation practices based on the carbon isotope discrimination of plant seeds: a case study from the south-east iberian Peninsula. J Archaeol Sci 24:729–740

    Article  Google Scholar 

  • Araus JL, Ferrio JP, Voltas J, Aguilera M, Buxó R (2014) Agronomic conditions and crop evolution in ancient Near East agriculture. Nat Commun 5:3953

    Article  Google Scholar 

  • Austad I, Sørli S, Domaas ST (2012) Den før-industrielle garden—Havrå i Hordaland. Heimen 49:277–290

    Article  Google Scholar 

  • Bakels CC (1997) The beginnings of manuring in western Europe. Antiquity 71:442–445

    Article  Google Scholar 

  • Bakkevig S (1992) Prehistoric cereal raising at Forsandmoen, south-western Norway: changes between the Bronze Age and the Iron Age. Laborativ Arkeologi 6:49–55

    Google Scholar 

  • Beck HE, Zimmermann NE, McVicar TR, Vergopolan N, Berg A, Wood EF (2018) Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci Data 5:180214

    Article  Google Scholar 

  • Bergsvik KA, Hjelle KL, Halvorsen LS, Olsen AB, Zinsli C (2020) Low-level agriculture in Neolithic western Norway. In: Gron KJ, Sørensen L, Rowley-Conwy P (eds) Farmers at the frontier: A pan European perspective on Neolithisation. Oxbow Books, Oxford, pp 339–362

    Chapter  Google Scholar 

  • Bergsvik KA, Darmark K, Hjelle KL, Aksdal J, Åstveit LI (2021) Demographic developments in Stone Age coastal western Norway by proxy of radiocarbon dates, stray finds and palynological data. Quat Sci Rev 259:106898

    Article  Google Scholar 

  • Blanz M, Ascough P, Mainland I et al (2019) Seaweed fertilisation impacts the chemical and isotopic composition of barley: implications for analyses of archaeological skeletal remains. J Archaeol Sci 104:34–44

    Article  Google Scholar 

  • Blume H-P, Leinweber P (2004) Plaggen Soils: landscape history, properties, and classification. J Plant Nutr Soil Sci 167:319–327

    Article  Google Scholar 

  • Bogaard A, Heaton THE, Poulton P, Merbach I (2007) The impact of manuring on nitrogen isotope ratios in cereals: archaeological implications for reconstruction of diet and crop management practices. J Archaeol Sci 34:335–343

    Article  Google Scholar 

  • Bogaard A, Fraser R, Heaton THE et al (2013) Crop manuring and intensive land management by Europe’s first farmers. Proc Natl Acad Sci USA 110:12589–12594

    Article  Google Scholar 

  • Bogaard A, Hodgson J, Nitsch E et al (2016) Combining functional weed ecology and crop stable isotope ratios to identify cultivation intensity: a comparison of cereal production regimes in Haute Provence, France and Asturias, Spain. Veget Hist Archaeobot 25:57–73

    Article  Google Scholar 

  • Britton K, Müldner G, Bell M (2008) Stable isotope evidence for salt-marsh grazing in the Bronze Age Severn Estuary, UK: implications for palaeodietary analysis at coastal sites. J Archaeol Sci 35:2111–2118

    Article  Google Scholar 

  • Coplen TB (2011) Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results. Rapid Commun Mass Spectrom 25:2538–2560

    Article  Google Scholar 

  • De Jong R, Hammarlund D, Nesje A (2009) Late Holocene effective precipitation variations in the maritime regions of south-west Scandinavia. Quat Sci Rev 28:54–64

    Article  Google Scholar 

  • DeNiro MJ (1987) Stable isotopy and archaeology. Am. Scientist 75:182–191

    Google Scholar 

  • Diinhoff S (1999) Træk af det Vestlandske jordbrugs historie fra sen stenalder til tidlig middelalder (Features of the western Norwegian agricultural history from the late Stone Age to the Early Middle Ages). Arkeo 1:14–28

    Google Scholar 

  • Diinhoff S (2004) Tidlige jordbrugsbosætninger på Vestlandet med spor efter toskibede langhuse (Early agrarian settlements in Vestlandet with two-aisled longhouses). Primitive Tider 7:41–48

    Google Scholar 

  • Diinhoff S, Slinning T (2013) Langhuset på Gjøsund og dateringsproblematikken (The longhouse at Gjøsund and the dating issues). In: Diinhoff S, Ramstad M, Slinning T (eds) Jordbruksbosetningens utvilking på Vestlandet (The development of the agrarian settlement in Vestlandet) UBAS—Universitetet i Bergen Arkeologiske Skrifter 7. Universitetet i Bergen, Bergen, pp 65–76

    Google Scholar 

  • Ferrio JP, Araus JL, Buxó R, Voltas J, Bort J (2005) Water management practices and climate in ancient agriculture: inferences from the stable isotope composition of archaeobotanical remains. Veget Hist Archaeobot 14:510–517

    Article  Google Scholar 

  • Flohr P, Jenkins E, Williams HRS, Jamjoum K, Nuimat S, Müldner G (2019) What can crop stable isotopes ever do for us? an experimental perspective on using cereal carbon stable isotope values for reconstructing water availability in semi-arid and arid environments. Veget Hist Archaeobot 28:497–512

    Article  Google Scholar 

  • Fraser RA, Bogaard A, Heaton T et al (2011) Manuring and stable nitrogen isotope ratios in cereals and pulses: towards a new archaeobotanical approach to the inference of land use and dietary practices. J Archaeol Sci 38:2790–2804

    Article  Google Scholar 

  • Fraser RA, Bogaard A, Charles M et al (2013) Assessing natural variation and the effects of charring, burial and pre-treatment on the stable carbon and nitrogen isotope values of archaeobotanical cereals and pulses. J Archaeol Sci 40:4754–4766

    Article  Google Scholar 

  • Fraser RA, Bogaard A, Schäfer M, Arbogast R, Heaton THE (2013b) Integrating botanical, faunal and human stable carbon and nitrogen isotope values to reconstruct land use and palaeodiet at LBK Vaihingen an der Enz, Baden-Württemberg. World Archaeol 45:492–517

    Article  Google Scholar 

  • Grabowski R (2011) Changes in cereal cultivation during the Iron Age in southern Sweden: a compilation and interpretation of the archaeobotanical material. Veget Hist Archaeobot 20:479–494

    Article  Google Scholar 

  • Gröcke DR, Treasure ER, Lester JJ, Gron KJ, Church MJ (2021) Effects of marine biofertilisation on Celtic bean carbon, nitrogen and sulphur isotopes: Implications for reconstructing past diet and farming practices. Rapid Commun Mass Spectrom 35:e8985

    Article  Google Scholar 

  • Gron KJ, Gröcke DR, Larsson M, Sørensen L, Larsson L, Rowley-Conwy P, Church MJ (2017) Nitrogen isotope evidence for manuring of early Neolithic Funnel Beaker Culture cereals from Stensborg, Sweden. J Archaeol Sci Rep 14:575–579

    Google Scholar 

  • Gustafsson S (1998) The farming economy in South and Central Sweden during the Bronze Age. A study based on carbonised botanical evidence. Curr Swedish Archaeol 6:63–71

    Article  Google Scholar 

  • Guttmann EB, Simpson IA, Davidson DA (2005) Manuring practices in antiquity: A review of the evidence. In: Smith DN, Brickley MB, Smith W (eds) Fertile ground. Papers in honour of Susan Limbrey. Symposia of the Association for Environmental Archaeology 22. Oxbow books, Oxford, pp 68–76

    Google Scholar 

  • Halvorsen LS, Hjelle KL (2017) Prehistoric agriculture in western Norway—Evidence for shifting and permanent cultivation based on botanical investigations from archaeological sites. J Archaeol Sci Rep 13:682–696

    Google Scholar 

  • Handley LL, Austin AT, Robinson D et al (1999) The 15N natural abundance (δ15N) of ecosystem samples reflects measures of water availability. Aust J Plant Physiol 26:185–199

    Google Scholar 

  • Heaton THE (1987) The 15N/14N ratios of plants in South Africa and Namibia: relationship to climate and coastal/saline environments. Oecologia 74:236–246

    Article  Google Scholar 

  • Heaton THE, Jones G, Halstead P, Tsipropoulos T (2009) Variations in the 13C/12C ratios of modern wheat grain, and implications for interpreting data from Bronze Age Assiros Toumba, Greece. J Archaeol Sci 36:2224–2233

    Article  Google Scholar 

  • Hjelle KL (1999) Use of modern pollen samples and estimated pollen representation factors as aids in the interpretation of cultural activity in local pollen diagrams. Norw Archaeol Rev 32:19–39

    Article  Google Scholar 

  • Hjelle KL, Hufthammer AK, Bergsvik KA (2006) Hesitant hunters: a review of the introduction of agriculture in western Norway. Environ Archaeol 11:147–170

    Article  Google Scholar 

  • Hjelle KL, Prøsch-Danielsen L, Soltvedt E-C (2016) Potential and recommendations: Agrarian botanical data from Western Norway. In: Iversen F, Petersson H (eds) The agrarian life of the north 2000 BC-AD 1000: Studies in rural settlement and farming in Norway. Portal Academic, Kristiansand, pp 293–342

    Google Scholar 

  • Hjelle KL, Halvorsen LS, Prøsch-Danielsen L et al (2018) Long-term changes in regional vegetation cover along the west coast of southern Norway: The importance of human impact. J Veg Sci 29:404–415

    Article  Google Scholar 

  • Hjelle KL, Halvorsen LS (2013) Makrofossilanalyser av prøver fra dyrkingslag, Osnes gnr. 7, bnr. 775/776, Ulstein kommune, Møre og Romsdal (Macrofossil analyses of samples from agricultural layers). 10/2013, Unpublished report

  • Jensen MA, Monstad K, Kvamme M (2012) Kulturlandskap på museum—er det mulig i praksis? utfordringer og erfaringer fra det freda kulturmiljøet Havrå (Cultural landscapes at the museum—is it possible in practice? Challenges and experiences from the protected cultural environment Havrå). Heimen 49:319–332

    Article  Google Scholar 

  • Jones G (2002) Weed ecology as a method for the archaeobotanical recognition of crop husbandry practices. Acta Palaeobot 42:185–193

    Google Scholar 

  • Kaland SH (1979) Lurekalven, en lyngheigård fra vikingtid/middelalder. En økonomisk studie. In: Fladby R, Sandnes J (eds) På leiting etter den eldste garden. Nye metoder i studie av tidlig norsk bosettingshistorie. Skrifter fra Norsk lokalihistorisk institutt 6. Universitetsforlaget, Oslo, pp 71–86

    Google Scholar 

  • Kanstrup M, Thomsen IK, Andersen AJ, Bogaard A, Christensen BT (2011) Abundance of 13C and 15N in emmer, spelt and naked barley grown on differently manured soils: towards a method for identifying past manuring practice. Rapid Commun Mass Spectrom 25:2879–2887

    Article  Google Scholar 

  • Kanstrup M, Holst MK, Jensen PM, Thomsen IK, Christensen BT (2014) Searching for long-term trends in prehistoric manuring practice. δ15N analyses of charred cereal grains from the 4th to the 1st millennium BC. J Archaeol Sci 51:115–125

    Article  Google Scholar 

  • Kolmanič A, Sinkovič L, Nečemer M, Ogrinc N, Meglič V (2022) The effect of cultivation practices on agronomic performance, elemental composition and isotopic signature of Spring Oat (Avena sativa L.). Plants 11:169

    Article  Google Scholar 

  • Kreuz A, Schäfer E (2011) Weed finds as indicators for the cultivation regime of the early Neolithic Bandkeramik culture? Veget Hist Archaeobot 20:333–348

    Article  Google Scholar 

  • Kvamme M (1982) En vegetasjonshistorisk undersøkelse av kulturlandskapets utvikling på Lurekalven. Lindås hd., Hordaland. Unpublished Cand. Real Thesis. University of Bergen, Bergen

    Google Scholar 

  • Mathias JM, Hudiburg TW (2022) isocalcR: An R package to streamline and standardize stable isotope calculations in ecological research. Glob Chang Biol 28:7428–7436

    Article  Google Scholar 

  • Moen A, Odland A (1993) Vegetasjonsseksjoner i Norge (The vegetational sections of Norway). In: Krovoll A, Moen A (eds) Fagmøte i vegetasjonsøkologi på Kongsvold i 1993 (Symposium on vegetation ecology at Kongsvold 1993). Universitetet i Trondheim, Vitenskapsmuseet, Trondheim, pp 37–53

    Google Scholar 

  • Moen A, Lillethun A, Odland A (1999) National Atlas of Norway: Vegetation. Norwegian Mapping Authority, Hønefoss

    Google Scholar 

  • Myhre B (2004) Agriculture, landscape and society ca. 4000 BC–AD 800. In: Almås R (ed) Norwegian agricultural history. Tapir Academic Press, Trondheim, pp 14–77

    Google Scholar 

  • Naumann E, Krzewińska M, Götherström A, Eriksson G (2014) Slaves as burial gifts in Viking Age Norway? evidence from stable isotope and ancient DNA analyses. J Archaeol Sci 41:533–540

    Article  Google Scholar 

  • Nitsch EK, Charles M, Bogaard A (2015) Calculating a statistically robust δ13C and δ15N offset for charred cereal and pulse seeds. STAR: Sci Technol Archaeol Res 1:1–8

    Article  Google Scholar 

  • Olausson M (1998) “Sig mig hur många djur du har…” Om arkeologi och stallning (“Tell me how much livestock you have…” About archaeology and stalling). In: Viklund K, Engelmark R, Linderholm J (eds) Fähus från bronsålder till i dag. Stallning och utegångsdrift i långtidsperspektiv (Cattle houses from the Bronze Age to the present Stalling and grazing in the long perspective). Skrifter om skogs–och lantbrukshistoria. Nordiska museet, Stockholm, pp 28–56

    Google Scholar 

  • Olsen AB (2013) Jordbrukskulturens pionertid på Vestlandet. Hus, åker og territorialitet. In: Diinhoff S, Ramstad M, Slinning T (eds) Jordbruksbosetningens utvikling på Vestlandet. UBAS—Universitetet i Bergen Arkeologiske Skrifter 7. Universitetet i Bergen, Bergen, pp 129–148

    Google Scholar 

  • Øye I, Julshamn L, Bade RL, Valvik KA, Larsen J (2002) Vestlandsgården-fire arkeologiske undersøkelser (The western Norwegian farm—four archaeological surveys) Arkeologisk institutt. Universitetet i Bergen, Bergen

    Google Scholar 

  • Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci Discuss 4:439–473

    Google Scholar 

  • Prøsch-Danielsen L, Soltvedt E-C (2011) From saddle to rotary. Hand querns in South-Western Norway and the corresponding crop plant assemblages. Acta Archaeol 82:129–162

    Google Scholar 

  • Prøsch-Danielsen L, Prescott C, Holst MK (2018) Economic and social zones during the Late Neolithic/Early Bronze Age in Jaeren, Southwest Norway reconstructing Large-scale land-use patterns. Praehist Z 93:48–88

    Article  Google Scholar 

  • R Core Team (2015) R version 3.2.2

  • Rognstad O, Løvberget AI, Steinset TA (2016) Landbruket i Norge 2015. Jordbruk—Skogbruk—Jakt (Agriculture in Norway 2015. Farming—Forestry—Hunting). Statistisk sentralbyrå Statistics Norway, Norway

    Google Scholar 

  • Rosvold J, Halley DJ, Hufthammer AK, Minagawa M, Andersen R (2010) The rise and fall of wild boar in a northern environment: Evidence from stable isotopes and subfossil finds. Holocene 20:1113–1121

    Article  Google Scholar 

  • Sageidet BM (2009) Late Holocene land use at Orstad, Jæren, southwestern Norway, evidence from pollen analysis and soil micromorphology. Catena 78:198–217

    Article  Google Scholar 

  • Schulting RJ, Vaiglova P, Crozier R, Reimer PJ (2017) Further isotopic evidence for seaweed-eating sheep from Neolithic Orkney. J Archaeol Sci Rep 11:463–470

    Google Scholar 

  • Sharp Z (2017) Principles of stable isotope geochemistry, 2nd edn. https://doi.org/10.25844/h9q1-0p82

  • Skre BG (1994) Havråboka: soga om ein gammal gard på Osterøy. Stiftinga Havråtunet, Osterøy

    Google Scholar 

  • Solberg B (2000) Jernalderen i Norge 500. før Kristus til 1030 etter Kristus. Cappelen Akademisk Forlag, Oslo

    Google Scholar 

  • Solemdal L, Frøseth RB, Grønmyr F (2021) Bygg og havre til mat—resultat fra feltforsøk i Surnadal (Barley and oats for food—results from field trials in Surnadal). NORSØK Rapport 6:4–32

    Google Scholar 

  • Styring AK, Fraser RA, Bogaard A, Evershed RP (2014) Cereal grain, rachis and pulse seed amino acid δ15N values as indicators of plant nitrogen metabolism. Phytochemistry 97:20–29

    Article  Google Scholar 

  • Styring AK, Ater M, Hmimsa Y et al (2016) Disentangling the effect of farming practice from aridity on crop stable isotope values: a present-day model from Morocco and its application to early farming sites in the eastern Mediterranean. Anthropocene Rev 3:2–22

    Article  Google Scholar 

  • Styring AK, Charles M, Fantone F et al (2017) Isotope evidence for agricultural extensification reveals how the world’s first cities were fed. Nat Plants 3:17076

    Article  Google Scholar 

  • Szpak P (2014) Complexities of nitrogen isotope biogeochemistry in plant-soil systems: implications for the study of ancient agricultural and animal management practices. Front Plant Sci 5:288

    Article  Google Scholar 

  • Treasure ER, Gröcke DR, Caseldine AE, Church MJ (2019) Neolithic farming and wild plant exploitation in Western Britain: archaeobotanical and crop stable isotope evidence from wales (c. 4000–2200 cal BC). Proc Prehist Soc 85:193–222

    Article  Google Scholar 

  • Van der Sluis LG, Hollund HI, Kars H, Sandvik PU, Denham SD (2016) A palaeodietary investigation of a multi-period churchyard in Stavanger, Norway, using stable isotope analysis (C, N, H, S) on bone collagen. J Archaeol Sci Rep 9:120–133

    Google Scholar 

  • Viklund K (1998) Cereals, weeds and crop processing in Iron Age Sweden: methodological and interpretive aspects of archaeobotanical evidence. University of Umeå, Umeå

    Google Scholar 

  • Viklund K, Linderholm J, Macphail RI (2013) Integrated palaeoenvironmental study: micro- and macrofossil analysis and geoarchaeology (soil chemistry, magnetic susceptibility and micromorphology). In: Gjerpe LE (ed) E18-prosjektet Gulli-Langåker, Oppsumering og arkeometriske analyser (E18-Project Gulli-Langåker, Summary and archaeometrical analyses). Fagbokforlaget Vigmostad & Bjørke, Oslo, pp 25–83

    Google Scholar 

  • Virginia RA, Delwiche CC (1982) Natural 15N abundance of presumed N2-fixing and non-N2-fixing plants from selected ecosystems. Oecologia 54:317–325

    Article  Google Scholar 

  • Wallace M, Jones G, Charles M, Fraser R, Halstead P, Heaton THE, Bogaard A (2013) Stable carbon isotope analysis as a direct means of inferring crop water status and water management practices. World Archaeol 45:388–409

    Article  Google Scholar 

Download references

Acknowledgements

Beate Helle is thanked for aid with illustrations and Cathy Jenks for linguistic corrections. Stable isotope analyses were done at the Norwegian National Infrastructure project FARLAB (Facility for advanced isotopic research and monitoring of weather, climate, and biogeochemical cycling, Project No. 245907) at the University of Bergen, Norway. The authors thank Frode Grønmyr at Landbruk Nordvest and Marit Adelsten Jensen at Havrå for collecting the modern cereals and supplying information about manuring regimes. Two anonymous reviewers are thanked for their input on a previous version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lene Synnøve Halvorsen.

Ethics declarations

Conflict of interest

The authors have no conflicting or competing interests relating to the contents of the article.

Additional information

Communicated by F. Bittmann.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 78 KB)

Supplementary file2 (DOCX 28 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halvorsen, L.S., Mørkved, P.T. & Hjelle, K.L. Were prehistoric cereal fields in western Norway manured? Evidence from stable isotope values (δ15N) of charred modern and fossil cereals. Veget Hist Archaeobot 32, 583–596 (2023). https://doi.org/10.1007/s00334-023-00923-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00334-023-00923-3

Keywords

Navigation