Skip to main content

Advertisement

Log in

Modern phytolith assemblages as indicators of vegetation in the southern Caucasus

  • Original Article
  • Published:
Vegetation History and Archaeobotany Aims and scope Submit manuscript

Abstract

As the southern Caucasus is extremely rich in archaeological sites, understanding the palaeoenvironmental conditions there is critical for interpreting the behavior, subsistence, and settlement patterns of the many and varied groups of hominins that occupied the region throughout the Pleistocene. Phytoliths can serve as valuable indicators of past environments, especially in cases where organic preservation is poor. Therefore, these results of a pilot-study on modern phytolith assemblages from Georgia and Armenia are presented here as a sound basis for the future interpretation of fossil assemblages from the region. The soil samples for phytoliths which were collected from modern vegetation units cover specifically open vegetation in steppes and semi-deserts and also closed vegetation, in broadleaved and coniferous woods, as well as in wetlands and riverside woodlands. Using relative abundance data and multivariate statistics, it is possible to show how the vegetation types in the region give rise to particular phytolith assemblages, which are statistically significant and recognizable. Especially strong statistical relationships occur between arid semi-deserts and the occurrence of Saddle phytolith types, while Rondel, Crenate, and Trapeziform are related to steppes. Bilobate, Bilobate with concave ends, and Cross are associated with wetlands and wet woodlands. Acute are clearly associated with conifers, whereas broadleaved trees do not show any characteristic phytolith association in the sampled dataset. However, some commonly used phytolith indices do not work properly in the region. The obtained results reveal statistical relationships between phytolith assemblages and vegetation that can be applied to fossil material and which may serve as an important resource for palaeoenvironmental reconstructions in this region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Plate 1
Plate 2

Similar content being viewed by others

References

  • Adler DS, Tushabramishvili N (2004) Middle palaeolithic patterns of settlement and subsistence in the southern Caucasus. In: Conard NJ (ed) Settlement dynamics of the middle palaeolithic and middle stone age, vol 2. Kerns, Tübingen, pp 91–132

    Google Scholar 

  • Adler DS, Bar-Oz G, Belfer-Cohen A, Bar-Yosef O (2006) Ahead of the game: middle and upper palaeolithic hunting behaviors in the southern Caucasus. Curr Anthropol 47:89–118

    Article  Google Scholar 

  • Adler DS, Yeritsyan B, Wilkinson K et al (2012) The Hrazdan Gorge Palaeolithic project, 2008–2009. In: Avetisyan P, Bobokhyan A (eds) Archaeology of Armenia in Regional Context. Proceedings of the International Conference dedicated to the 50th Anniversary of the Institute of Archaeology and Ethnography 2009 in Yerevan. Gitutyan, Verevan, pp 21–37

  • Albert RM, Weiner S (2001) Study of phytoliths in prehistoric ash layers from Kebara and Tabun Caves using a quantitative approach. In: Meunier JD, Colin F (eds) Phytoliths: applications in earth sciences and human history. Balkema, Lisse, Rotterdam, pp 251–266

    Google Scholar 

  • Albert RM, Weiner S, Bar-Yosef O, Meignen L (2000) Phytoliths in the Middle Palaeolithic deposits of Kebara Cave, Mt Carmel, Israel: study of the plant materials used for fuel and other Purposes. J Archaeol Sci 27:931–947. https://doi.org/10.1006/jasc.2000.0507

    Article  Google Scholar 

  • Alexandre A, Meunier J-D, Colin F, Koud J-M (1997a) Plant impact on the biogeochemical cycle of silicon and related weathering processes. Geochim Cosmochim Acta 61:677–682

    Article  Google Scholar 

  • Alexandre A, Meunier J-D, Lézine A-M, Vincens A, Schwartz D (1997b) Phytoliths: indicators of grassland dynamics during the late Holocene in intertropical Africa. Palaeogeogr Palaeoclimatol Palaeoecol 136:213–229

    Article  Google Scholar 

  • An X-H (2016) Morphological characteristics of phytoliths from representative conifers in China. Palaeoworld 25:116–127. https://doi.org/10.1016/j.palwor.2016.01.002

    Article  Google Scholar 

  • Ball TB, Davis A, Evett RR et al (2016) Morphometric analysis of phytoliths: recommendations towards standardization from the International Committee for Phytolith Morphometrics. J Archaeol Sci 68:106–111

    Article  Google Scholar 

  • Barboni D, Bremond L (2009) Phytoliths of east african grasses: an assessment of their environmental and taxonomic significance based on floristic data. Rev Palaeobot Palynol 158:29–41

    Article  Google Scholar 

  • Barboni D, Bremond L, Bonnefille R (2007) Comparative study of modern phytolith assemblages from inter-tropical Africa. Palaeogeogr Palaeoclimatol Palaeoecol 246:454–470. https://doi.org/10.1016/j.palaeo.2006.10.012

    Article  Google Scholar 

  • Blinnikov MS (2005) Phytoliths in plants and soils of the interior Pacific Northwest, USA. Rev Palaeobot Palynol 135:71–98

    Article  Google Scholar 

  • Blinnikov MS, Busacca A, Whitlock C (2002) Reconstruction of the late pleistocene grassland of the Columbia basin, Washington, USA, based on phytolith records in loess. Palaeogeogr Palaeoclimatol Palaeoecol 177:77–101

    Article  Google Scholar 

  • Blinnikov MS, Bagent CM, Reyerson PE (2013) Phytolith assemblages and opal concentrations from modern soils differentiate temperate grasslands of controlled composition on experimental plots at Cedar Creek, Minnesota. Quat Int 287:101–113

    Article  Google Scholar 

  • Blinnikov MS, Hoffman BR, Salova YA (2021) Modern Analog Assemblages of Phytoliths under various Plant Communities of the Middle Volga and their Applicability for Archaeological Reconstructions. Volga River Reg Archaeol 4:217–234

    Google Scholar 

  • Bohn U, Gollub G, Hettwer C et al (2004) Karte der natürlichen Vegetation Europas (Map of the natural vegetation of Europe), scale 1:2 500 000. Münster, Landwirtschaftsverlag. Download of EuroVegMap from: synbiosis.alterra.nl/eurovegmap/

  • Borrelli N, Alvarez MF, Osterrieth ML, Marcovecchio JE (2010) Silica content in soil solution and its relation with phytolith weathering and silica biogeochemical cycle in typical argiudolls of the Pampean Plain, Argentina—a preliminary study. J Soils Sediments 10:983–994

    Article  Google Scholar 

  • Bozarth SR (1992) Classification of opal phytoliths formed in selected dicotyledons native to the Great Plains. In: Rapp G, Mulholland SC (eds) Phytolith systematics: emerging issues. Springer, New York, pp 193–214

    Chapter  Google Scholar 

  • Bozarth S (1993) Biosilicate assemblages of boreal forests and Aspen parklands. In: Pearsall DM, Piperno DR (eds) Current research in Phytolith Analysis: applications in Archaeology and Paleoecology. The University Museum of Archaeology and Anthropology, Philadelphia, pp 95–108

    Google Scholar 

  • Bremond L, Alexandre A, Hély C, Guiot J (2005a) A phytolith index as a proxy of tree cover density in tropical areas: calibration with Leaf Area Index along a forest–savanna transect in southeastern Cameroon. Glob Planet Chang 45:277–293

    Article  Google Scholar 

  • Bremond L, Alexandre A, Peyron O, Guiot J (2005b) Grass water stress estimated from phytoliths in West Africa. J Biogeogr 32:311–327

    Article  Google Scholar 

  • Bremond L, Alexandre A, Wooller MJ et al (2008) Phytolith indices as proxies of grass subfamilies on east african tropical mountains. Glob Planet Chang 61:209–224

    Article  Google Scholar 

  • Brittingham A, Petrosyan Z, Hepburn JC et al (2019) Influence of the North Atlantic Oscillation on δD and δ18O in meteoric water in the armenian Highland. J Hydrol 575:513–522

    Article  Google Scholar 

  • Brown DA (1984) Prospects and limits of a phytolith key for grasses in the central United States. J Archaeol Sci 11:345–368

    Article  Google Scholar 

  • Cabanes D, Shahack-Gross R (2015) Understanding fossil phytolith preservation: the role of partial dissolution in paleoecology and archaeology. PLoS ONE 10:e0125532

    Article  Google Scholar 

  • Cabanes D, Weiner S, Shahack-Gross R (2011) Stability of phytoliths in the archaeological record: a dissolution study of modern and fossil phytoliths. J Archaeol Sci. https://doi.org/10.1016/j.jas.2011.05.020

    Article  Google Scholar 

  • Collura LV, Neumann K (2017) Wood and bark phytoliths of west african woody plants. Quat Int 434:142–159

    Article  Google Scholar 

  • Cooke J, Leishman MR (2011) Is plant ecology more siliceous than we realise? Trends Plant Sci 16:61–68. https://doi.org/10.1016/j.tplants.2010.10.003

    Article  Google Scholar 

  • Crifò C, Strömberg CAE (2020) Small-scale spatial resolution of the soil phytolith record in a rainforest and a dry forest in Costa Rica: applications to the deep-time fossil phytolith record. Palaeogeogr Palaeoclimatol Palaeoecol 537:109107

    Article  Google Scholar 

  • Davis JC, Sampson RJ (1986) Statistics and data analysis in geology, 2nd edn. Wiley, New York

    Google Scholar 

  • Diester-Haass L, Schrader H-J, Thiede J (1973) Sedimentological and paleoclimatological investigations of two pelagic ooze cores off Cape Barbas, North-West Africa. Meteor Forschungsergeb Reihe C Geologie und Geophysik 16:19–66

    Google Scholar 

  • Elizbarashvili M, Elizbarashvili E, Tatishvili M et al (2017) Georgian climate change under global warming conditions. Ann Agrar Sci 15:17–25. https://doi.org/10.1016/j.aasci.2017.02.001

    Article  Google Scholar 

  • Esau K (1953) Plant anatomy. Wiley, New York

    Google Scholar 

  • Farmer VC, Delbos E, Miller JD (2005) The role of phytolith formation and dissolution in controlling concentrations of silica in soil solutions and streams. Geoderma 127:71–79

    Article  Google Scholar 

  • Fayvush GM, Aleksanyan AS (2016) Habitats of Armenia. National Academy of Sciences of the Republic of Armenia, Institute of Botany, Yerevan

    Google Scholar 

  • Fick SE, Hijmans RJ (2017) WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol 37:4302–4315

    Article  Google Scholar 

  • Frahm E, Jones CO, Corolla M et al (2020) Comparing lower and Middle Palaeolithic lithic procurement behaviors within the Hrazdan basin of central Armenia. J Archaeol Sci: Rep 32:102389

    Google Scholar 

  • Fraysse F, Cantais F, Pokrovsky OS, Schott J, Meunier J-D (2006) Aqueous reactivity of phytoliths and plant litter: physico-chemical constraints on terrestrial biogeochemical cycle of silicon. J Geochem Explor 88:202–205

    Article  Google Scholar 

  • Fraysse F, Pokrovsky OS, Schott J, Meunier J-D (2009) Surface chemistry and reactivity of plant phytoliths in aqueous solutions. Chem Geol 258:197–206

    Article  Google Scholar 

  • Fredlund GG, Tieszen LT (1994) Modern phytolith assemblages from the North American Great Plains. J Biogeogr 21:321–335. https://doi.org/10.2307/2845533

    Article  Google Scholar 

  • Fredlund GG, Tieszen LL (1997) Calibrating grass phytolith assemblages in climatic terms: application to late pleistocene assemblages from Kansas and Nebraska. Palaeogeogr Palaeoclimatol Palaeoecol 136:199–211

    Article  Google Scholar 

  • Gabunia L, Vekua A (1995) A Plio-Pleistocene hominid from Dmanisi, East Georgia, Caucasus. Nature 373:509–512

    Article  Google Scholar 

  • Gao G, Jie D, Li D et al (2018a) Reliability of phytoliths for reconstructing vegetation dynamics in northern temperate forest regions: a case study in northeast China. Quat Sci Rev 201:1–12

    Article  Google Scholar 

  • Gao G, Jie D, Liu L et al (2018b) Phytolith characteristics and preservation in trees from coniferous and broad-leaved mixed forest in an eastern mountainous area of Northeast China. Rev Palaeobot Palynol 255:43–56. https://doi.org/10.1016/j.revpalbo.2018.05.001

    Article  Google Scholar 

  • Gasparyan B, Arimura M (2014) Stone Age of Armenia: a guide-book to the Stone Age Archaeology in the Republic of Armenia. Center for Cultural Resource Studies, Kanazawa University, Kanazawa

    Google Scholar 

  • Ge Y, Jie DM, Sun YL, Liu HM (2011) Phytoliths in woody plants from the northern slope of the Changbai Mountain (Northeast China), and their implication. Plant Syst Evol 292:55–62. https://doi.org/10.1007/s00606-010-0406-y

    Article  Google Scholar 

  • Ge Y, Lu H, Wang C, Gao X (2020) Phytoliths in selected broad-leaved trees in China. Sci Rep 10:15577

    Article  Google Scholar 

  • Ghosh R, Naskar M, Bera S (2011) Phytolith assemblages of grasses from the Sunderbans, India and their implications for the reconstruction of deltaic environments. Palaeogeogr Palaeoclimatol Palaeoecol 311:93–102

    Article  Google Scholar 

  • Ghukasyan A (2004) Extent of karyological study of armenian grasses (Poaceae). Flora Rastit Rastit Resur Armenii 15:85–89

    Google Scholar 

  • Grimm EC (2011) Tilia 1.7.16. Illinois State Museum, Springfield

    Google Scholar 

  • Gulisashvili VZ, Makhatadze LB, Prilipko LI (1975) Rastitelnost Kavkaza (Vegetation of the Caucasus). Nauka, Moscow. (in Russian)

    Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:1–9

    Google Scholar 

  • Jattisha PI, Sabu M (2015) Foliar phytoliths as an aid to the identification of Paniceae (Panicoideae: Poaceae) grasses in South India. Webbia 70:115–131

    Article  Google Scholar 

  • Kadowaki S, Maher L, Portillo M et al (2015) Geoarchaeological and palaeobotanical evidence for prehistoric cereal storage in the southern Caucasus: the neolithic settlement of Göytepe (mid 8th millennium BP). J Archaeol Sci 53:408–425

    Article  Google Scholar 

  • Kondo R, Childs CW, Atkinson IAE, Pritchard T (1994) Opal Phytoliths of New Zealand. Manaaki Whenua Press, Lincoln

    Google Scholar 

  • Krishnan S, Samson NP, Ravichandran P, Narasimhan D, Dayanandan P (2000) Phytoliths of indian grasses and their potential use in identification. Bot J Linn Soc 132:241–252

    Article  Google Scholar 

  • Latorre F, Honaine MF, Osterrieth ML (2012) First report of phytoliths in the air of Argentina. Aerobiologia 28:61–69

    Article  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical Ecology, vol 20. Elsevier, Amsterdam

    Book  Google Scholar 

  • Lisztes-Szabó Z, Braun M, Csík A, Pető Á (2019) Phytoliths of six woody species important in the Carpathians: characteristic phytoliths in Norway spruce needles. Veget Hist Archaeobotany 28:649–662

    Article  Google Scholar 

  • Liu L, Jie D, Liu H et al (2021) An evaluation of soil phytoliths for reconstructing plant communities and palaeoclimate in the northern temperate region. Eur J Soil Sci 72:900–917

    Article  Google Scholar 

  • Lordkipanidze D, Ponce de León MS, Margvelashvili A et al (2013) A complete skull from Dmanisi, Georgia, and the evolutionary biology of early Homo. Science 342:326–331

    Article  Google Scholar 

  • Lu H, Liu K-b (2003a) Phytoliths of common grasses in the coastal environments of southeastern USA. Estuar Coast Shelf Sci 58:587–600

    Article  Google Scholar 

  • Lu H, Liu K-b (2003b) Morphological variations of lobate phytoliths from grasses in China and the south-eastern United States. Divers Distrib 9:73–87

    Article  Google Scholar 

  • Lu H-Y, Wu N-Q, Yang X-D et al (2006) Phytoliths as quantitative indicators for the reconstruction of past environmental conditions in China I: phytolith-based transfer functions. Quat Sci Rev 25:945–959

    Article  Google Scholar 

  • Ma JF (2004) Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Sci Plant Nutr 50:11–18. https://doi.org/10.1080/00380768.2004.10408447

    Article  Google Scholar 

  • Ma JF, Yamaji N (2008) Functions and transport of silicon in plants. Cell Mol Life Sci. https://doi.org/10.1007/s00018-008-7580-x

    Article  Google Scholar 

  • Madella M, Lancelotti C (2012) Taphonomy and phytoliths: a user manual. Quat Int 275:76–83

    Article  Google Scholar 

  • Mercader J, Bennett T, Esselmont C, Simpson S, Walde D (2009) Phytoliths in woody plants from the Miombo woodlands of Mozambique. Ann Bot 104:91–113

    Article  Google Scholar 

  • Messager E, Lordkipanidze D, Delhon C, Ferring CR (2010a) Palaeoecological implications of the Lower Pleistocene phytolith record from the Dmanisi Site (Georgia). Palaeogeogr Palaeoclimatol Palaeoecol 288:1–13

    Article  Google Scholar 

  • Messager E, Lordkipanidze D, Kvavadze E, Ferring CR, Voinchet P (2010b) Palaeoenvironmental reconstruction of Dmanisi site (Georgia) based on palaeobotanical data. Quat Int 223–224:20–27

    Article  Google Scholar 

  • Messager E, Herrscher E, Martin L et al (2015) Archaeobotanical and isotopic evidence of early bronze age farming activities and diet in the mountainous environment of the South Caucasus: a pilot study of Chobareti site (samtskhe–Javakheti region). J Archaeol Sci 53:214–226

    Article  Google Scholar 

  • Mulholland SC (1989) Phytolith shape frequencies in North Dakota grasses: a comparison to general patterns. J Archaeol Sci 16:489–511. https://doi.org/10.1016/0305-4403(89)90070-8

    Article  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  Google Scholar 

  • Nakhutsrishvili G (2012) The vegetation of Georgia (South Caucasus). Springer, Berlin, Heidelberg

    Google Scholar 

  • Nawaz MA, Zakharenko AM, Zemchenko IV et al (2019) Phytolith formation in plants: from soil to cell. Plants 8:249

    Article  Google Scholar 

  • Neumann K, Fahmy AG, Müller-Scheeßel N, Schmidt M (2017) Taxonomic, ecological and palaeoecological significance of leaf phytoliths in west african grasses. Quat Int 434:15–32

    Article  Google Scholar 

  • Neumann K, Strömberg CAE, Ball T et al (2019) International Code for Phytolith nomenclature (ICPN) 2.0. Ann Bot 124:189–199. https://doi.org/10.1093/aob/mcz064

    Article  Google Scholar 

  • Nguyen NM, Dultz S, Guggenberger G (2014) Effects of pretreatment and solution chemistry on solubility of rice-straw phytoliths. J Plant Nutr Soil Sci 177:349–359

    Article  Google Scholar 

  • Novello A, Barboni D, Sylvestre F et al (2017) Phytoliths indicate significant arboreal cover at Sahelanthropus type locality TM266 in northern Chad and a decrease in later sites. J Hum Evol 106:66–83

    Article  Google Scholar 

  • Osterrieth M, Madella M, Zurro D, Alvarez MF (2009) Taphonomical aspects of silica phytoliths in the loess sediments of the Argentinean Pampas. Quat Int 193:70–79

    Article  Google Scholar 

  • Parr JF (2006) Effect of fire on phytolith coloration. Geoarchaeology 21:171–185

    Article  Google Scholar 

  • Pinhasi R, Gasparian B, Wilkinson K et al (2008) Hovk 1 and the Middle and Upper Paleolithic of Armenia: a preliminary framework. J Hum Evol 55:803–816

    Article  Google Scholar 

  • Piperno DR (1984) A comparison and differentiation of phytoliths from maize and wild grasses: use of morphological criteria. Am Antiqu 49:361–383

    Article  Google Scholar 

  • Piperno DR (2006) Phytoliths: a Comprehensive Guide for Archaeologists and Paleoecologists. Altamira Press, Walnut Creek

    Google Scholar 

  • Piperno DR, Pearsall DM (1998) The silica bodies of tropical american grasses: morphology, taxonomy, and implications for grass systematics and fossil phytolith identification. Smithson Contrib Bot 85:1–40

    Article  Google Scholar 

  • Prasad V, Strömberg CAE, Alimohammadian H, Sahni A (2005) Dinosaur coprolites and the early evolution of grasses and grazers. Science 310:1177–1180

    Article  Google Scholar 

  • Prentice AJ, Webb EA (2016) The effect of progressive dissolution on the oxygen and silicon isotope composition of opal-A phytoliths: implications for palaeoenvironmental reconstruction. Palaeogeogr Palaeoclimatol Palaeoecol 453:42–51

    Article  Google Scholar 

  • Rapp GR, Mulholland SC (1992) Phytolith Systematics: emerging issues. Springer, New York

    Book  Google Scholar 

  • Rashid I, Mir SH, Zurro D, Dar RA, Reshi ZA (2019) Phytoliths as proxies of the past. Earth-Sci Rev 194:234–250

    Article  Google Scholar 

  • Sangster AG (1968) Studies of opaline silica deposits in the Leaf of Sieglingia decumbens L.‘Bernh.’, using the scanning Electron microscope. Ann Bot 32:237–240

    Article  Google Scholar 

  • Sargsyan M (2017) National Atlas of Armenia. Center for Geodesy and Cartography SNCO, Yerevan

    Google Scholar 

  • Shillito L-M, Matthews W, Almond MJ, Bull ID (2011) The microstratigraphy of middens: capturing daily routine in rubbish at neolithic Çatalhöyük, Turkey. Antiquity 85:1024–1038

    Article  Google Scholar 

  • Shillito L-M, Blong JC, Green EJ, van Asperen EN (2020) The what, how and why of archaeological coprolite analysis. Earth-Sci Rev 207:103196

    Article  Google Scholar 

  • Silantyeva M, Solomonova M, Speranskaja N, Blinnikov MS (2018) Phytoliths of temperate forest-steppe: a case study from the Altay, Russia. Rev Palaeobot Palynol 250:1–15

    Article  Google Scholar 

  • Solomonova MY, Blinnikov MS, Silantyeva MM, Speranskaja NY (2019) Influence of moisture and temperature regimes on the phytolith assemblage composition of mountain ecosystems of the mid latitudes: a case study from the Altay Mountains. Front Ecol Evol 7:2

    Article  Google Scholar 

  • Strömberg CAE (2004) Using phytolith assemblages to reconstruct the origin and spread of grass-dominated habitats in the great plains of North America during the late Eocene to early miocene. Palaeogeogr Palaeoclimatol Palaeoecol 207:239–275

    Article  Google Scholar 

  • Strömberg CAE, Werdelin L, Friis EM, Saraç G (2007) The spread of grass-dominated habitats in Turkey and surrounding areas during the Cenozoic: phytolith evidence. Palaeogeogr Palaeoclimatol Palaeoecol 250:18–49

    Article  Google Scholar 

  • Strömberg CAE, Dunn RE, Crifò C, Harris EB (2018) Phytoliths in paleoecology: analytical considerations, current use, and future directions. In: Croft DA, Su DF, Simpson SW (eds) Methods in Paleoecology. Springer, Cham, pp 235–287

    Chapter  Google Scholar 

  • Takhtajian AL, Gabrielyan ET, Oganesian ME (eds) (2011) Flora of Armenia. Gantner, Ruggell, Liechtenstein

    Google Scholar 

  • Tao X, Wen M, Li R et al (2020) Phytolith sizes and assemblages differentiate genera and ecotypes of woody bamboos in subtropical Southwest China. Rev Palaeobot Palynol 272:104129

    Article  Google Scholar 

  • Tielidze L, Trapaidze V, Matchavariani L, Wheate R (2019) Climate, hydrography, and soils of Georgia. In: Tielidze L (ed) Geomorphology of Georgia. Springer, Cham, pp 15–34

    Chapter  Google Scholar 

  • Tsartsidou G, Lev-Yadun S, Albert R-M et al (2007) The phytolith archaeological record: strengths and weaknesses evaluated based on a quantitative modern reference collection from Greece. J Archaeol Sci. https://doi.org/10.1016/j.jas.2006.10.017

    Article  Google Scholar 

  • Tsartsidou G, Lev-Yadun S, Efstratiou N, Weiner S (2008) Ethnoarchaeological study of phytolith assemblages from an agro-pastoral village in Northern Greece (Sarakini): development and application of a Phytolith Difference Index. J Archaeol Sci 35:600–613

    Article  Google Scholar 

  • Twiss PC (1983) Dust deposition and opal phytoliths in the Great Plains. Trans Nebr Acad Sci 11:73–82

    Google Scholar 

  • Twiss PC (1987) Grass-opal phytoliths as climatic indicators of the Great Plains Pleistocene. In: Johnson WC (ed) Quaternary environments of Kansas. (Kansas Geological Survey Guidebook Series 5) Kansas Geological Survey. University of Kansas, Lawrence, pp 179–188

    Google Scholar 

  • Twiss PC (1992) Predicted world distribution of C3 and C4 grass phytoliths. In: Rapp G, Mulholland SC (eds) Phytolith systematics: emerging issues. Springer, New York, pp 113–128

    Chapter  Google Scholar 

  • Twiss PC, Suess E, Smith RM (1969) Morphological classification of grass phytoliths. Soil Sci Soc Am J 33:109–115

    Article  Google Scholar 

  • Volkova EV, Onipchenko VG, Blinnikov MS (1995) Subrecent phytolith assemblages of alpine communities in the Teberda Nature Reserve, the north-western Caucasus, Russia. Oecologia Mont 4:1–8

    Google Scholar 

  • Wu Y, You H-L, Li X-Q (2018) Dinosaur-associated Poaceae epidermis and phytoliths from the early cretaceous of China. Natl Sci Rev 5:721–727

    Article  Google Scholar 

  • Yost CL, Blinnikov MS (2011) Locally diagnostic phytoliths of wild rice (Zizania palustris L.) from Minnesota, USA: comparison to other wetland grasses and usefulness for archaeobotany and paleoecological reconstructions. J Archaeol Sci 38:1977–1991

    Article  Google Scholar 

  • Zhao Z, Pearsall DM (1998) Experiments for improving phytolith extraction from soils. J Archaeol Sci 25:587–598

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Ivan Gabrielyan and Friedemann Schrenk for help during field work. Furthermore, we would like to thank Mikhail Blinnikov, Chad Yost, and Katharina Neumann for helping Johan Jarl with phytolith processing and identification protocols. Thanks are due to Claudia Groth for help with figures and in the laboratory. In addition, thanks to Alexia Smith for allowing use of the UCONN archaeobotany laboratory. Funding was in part provided by the UConn Anthropology SRF. We are also grateful to the ROCEEH Research Centre ‘The role of culture in early expansions of humans’ of the Heidelberg Academy of Sciences and Humanities (http://www.roceeh.net) and the Bundesministerium für Bilding und Forschung (German Ministry of Education and Research) (grant BMBF 01DK17023) for financial support. This work is a contribution to NECLIME (http://www.neclime.de). The authors would like to thank two anonymous reviewers and the editor for very helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johan Jarl.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Communicated by K. Neumann.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jarl, J., Bruch, A.A. Modern phytolith assemblages as indicators of vegetation in the southern Caucasus. Veget Hist Archaeobot 32, 561–581 (2023). https://doi.org/10.1007/s00334-023-00921-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00334-023-00921-5

Keywords

Navigation