Skip to main content

Advertisement

Log in

Reconstruction of the environmental conditions for the past 2,000 years in the Perico River basin (NW Argentina) based on fossil pollen records

  • Original Article
  • Published:
Vegetation History and Archaeobotany Aims and scope Submit manuscript

Abstract

In this paper we aim to reconstruct seasonal humid conditions of the past 2,000 years based on fossil pollen records from high altitude sites (> 3,000 m a.s.l.) in NW Argentina. Palaeoenvironmental studies were conducted in two wetlands located in the upper basin of the Perico River (Jujuy province, Argentina). To assess the seasonal characteristics for different climatic periods, we used the pollen index log10 P/A to describe summer conditions, where P/A stands for the ratio between the percentages of Poaceae (P) and Asteraceae (A). To interpret winter conditions we used log10 T/A index. T/A is the ratio between the sum of percentages of transported pollen coming from Andean forest (T) and the percentage of Asteraceae (A). The prevalence of Poaceae pollen during certain time periods provides indirect information about soil moisture indicating rainy summers related to an intensified activity of the South American Monsoon System (SAMS). In contrast, periods with predominance of Asteraceae pollen suggest drier summers as a consequence of a reduction in SAMS activity. Structural changes from grassland to mixed steppe occurred at a multi-centennial scale, mainly driven by rainfall variability. The analysis of the log10T/A index enabled us to reconstruct the frequency of the mountain-valley breeze and indirectly to infer the winter precipitation. Periods with a high input of tree pollen (> 20%) indicate high breeze frequency and consequently less winter precipitation and vice versa. We applied this reconstruction approach to characterize the seasonal humidity conditions during the Medieval Climate Anomaly, Little Ice Age and Current Warm Period in the study region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abbott MB, Wolfe BB, Wolfe AP et al (2003) Holocene paleohydrology and glacial history of the central Andes using multiproxy lake sediment studies. Palaeogeogr Palaeoclimatol Palaeoecol 194:123–138. https://doi.org/10.1016/S0031-0182(03)00274-8

    Article  Google Scholar 

  • Ahmed M, Anchukaitis KJ, Asrat A et al (2013) Continental-scale temperature variability during the past two millennia. Nat Geosci 6:339–346. https://doi.org/10.1038/ngeo2566

    Article  Google Scholar 

  • Apaéstegui J, Cruz FW, Vuille M et al (2018) Precipitation changes over the eastern Bolivian Andes inferred from speleothem (δ18O) records for the last 1400 years. Earth Planet Sci Lett 494:124–134. https://doi.org/10.1016/j.epsl.2018.04.048

    Article  Google Scholar 

  • Bakker J, Moscol Olivera M, Hooghiemstra H (2008) Holocene environmental change at the upper forest line in northern Ecuador. Holocene 18:877–893. https://doi.org/10.1177/0959683608093525

    Article  Google Scholar 

  • Barrera D, Maggi A (2018) Variabilidad de la precipitación en el altiplano argentino: Incidencia de la transición climática 1976/1977 y del fenómeno El Niño - oscilación del sur en el Noroeste Argentino. Meteorológica 43:41–71

    Google Scholar 

  • Bennett KD, Willis KJ (2001) Pollen. In: Smol JP, Birks HJB, Last WM, Bradley RS, Alverson K (eds) Tracking environmental change using lake sediments 3: terrestrial, algal, and siliceous indicators. Springer, Dordrecht, pp 5–32

    Google Scholar 

  • Bianchi AR, Yáñez CE, Acuña LR (2005) Base de datos mensuales de precipitaciones del Noroeste Argentino. Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Agropecuaria (EEA), Salta-Jujuy.

  • Bird BW, Abbott MB, Vuille M, Rodbell DT, Stansell ND, Rosenmeier MF (2011) A 2300-year-long annually resolved record of the South American summer monsoon from the Peruvian Andes. Proc Natl Acad Sci USA 21(8):583–8. https://doi.org/10.1073/pnas.1003719108

    Article  Google Scholar 

  • Blaauw M (2010) Methods and code for “classical” age-modelling of radiocarbon sequences. Quat Geochronol 5:512–518

    Article  Google Scholar 

  • Blaauw M, Christen JA (2011) Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal 6:457–474. https://doi.org/10.1214/11-BA618

    Article  Google Scholar 

  • Braun Wilke R, Escalier I (2008) Estudio de vegetación en la Finca Cerro Negro. www.bmj.org.ar/index.php?menu_id=3&jera_id=93&page_id=71&cont_id=151. Accessed 24 April 2015

  • Braun Wilke R, Buitrago L, Villafañe BS (2013a) La cubierta vegetal y el clima en las tierras altas de Jujuy (Argentina) alrededor de 24°S. Revista Agraria 7:103–115

    Google Scholar 

  • Braun Wilke R, Santos EE, Picchetti LP, Larran MT (2013a) Carta de aptitud ambiental de la provincia de Jujuy. Ediunju, San Salvador de Jujuy, Argentina

  • Braun Wilke RH, Picchetti LPE, Villafañe BS (1999) Pasturas Montanas de Jujuy. Universidad Nacional de Jujuy, San Salvador de Jujuy, Argentina

    Google Scholar 

  • Bruniard ED (1986) Aspectos geográficos de las precipitaciones nivales en la República Argentina. Bol Estud Geogr 82–83:7–30

    Google Scholar 

  • Buitrago LG (2000) El Clima de la provincia de Jujuy. Ediunju, San Salvador de Jujuy, Argentina

    Google Scholar 

  • Bush MB, Hanselman JA, Hooghiemstra H (2011) Andean montane forests and climate change. In: Bush MB, Flenley JR (eds) Tropical rainforest responses to climatic change, 2nd edn. Springer, Berlin, pp 33–54

    Chapter  Google Scholar 

  • Cabrera A (1982) Vegetación de la Provincia de Jujuy. Acad Nac De Agron y Vet 36:21–26

    Google Scholar 

  • Castino F, Bookhagen B, Strecker MR (2016) Rainfall variability and trends of the past six decades (1950–2014) in the subtropical NW Argentine Andes. Clim Dyn 48:1,049-1,067. https://doi.org/10.1007/s00382-016-3127-2

    Article  Google Scholar 

  • Chicahuala MS, Steinaker DF, Demaría MR (2018) Respuestas fenológicas de gramíneas C3 y C4 a variaciones interanuales de precipitación y temperatura. Ecologia Austral 28:455–466. https://doi.org/10.25260/EA.18.28.2.0.658

    Article  Google Scholar 

  • Domic AI, Capriles JM, Escobar-Torrez K, Santoro CM, Maldonado A (2018) Two thousand years of land-use and vegetation evolution in the Andean Highlands of Northern Chile inferred from Pollen and charcoal analyses. Quaternary 1:32. https://doi.org/10.3390/quat1030032

    Article  Google Scholar 

  • Easterbrook DJ (2016) Cause of global climate changes: correlation of global temperature, sunspots, solar irradiance, cosmic rays, and radiocarbon and berylium production rates. In: Easterbrook DJ (ed) Evidence-based climate science: data opposing CO2 emissions as the primary source of global warming, 2nd edn. Elsevier, Amsterdam, pp 254–262

    Google Scholar 

  • Edwards AWF, Cavalli-Sforza LL (1964) Reconstruction of evolutionary trees. In: Heywood VH, McNeill J (eds) Phenetic and phylogenetic classification: systematics association publication 6. The Systematics Association, London, pp 67–76

    Google Scholar 

  • Engel Z, Skrzypek G, Chuman T, Šefrna L, Mihaljevič M (2014) Climate of the Western Cordillera of the Central Andes over the last 4300 years. Quat Sci Rev 99:60–77. https://doi.org/10.1016/j.quascirev.2014.06.019

    Article  Google Scholar 

  • Erdtman G (1960) The acetolysis method: a revised description. Svensk Bot Tidskr 54:561–564

    Google Scholar 

  • Faegri K, Iversen J (1989). In: Faegri K, Kaland PE, Krzywinski K (eds) Textbook of pollen analysis, 4th edn. Wiley, Chichester

    Google Scholar 

  • Fierro PT, Kulemeyer JJ, Lupo LC, Giralt S (2016) Historia ambiental de la Laguna Seca, Tartagal, Salta, Noroeste Argentino. Rev Bras Paleontol 19:325–340. https://doi.org/10.4072/rbp.2016.2.14

    Article  Google Scholar 

  • Flantua SGA, Hooghiemstra H, Vuille M et al (2016) Climate variability and human impact in South America during the last 2000 years: synthesis and perspectives from pollen records. Clim Past 12:483–523. https://doi.org/10.5194/cp-12-483-2016

    Article  Google Scholar 

  • Garalla S (2003) Análisis polínico de una secuencia sedimentaria del Holoceno Tardío en Abra del Infiernillo, Tucumán, Argentina. Polen 12:53–63

    Google Scholar 

  • García ME, Reyes NJ, Espeche ML et al (2021) Strong seasonal effects and long-term weather-related factors drive the temporal variability of airborne pollen in the atmosphere of San Miguel de Tucumán, Argentina. Grana 60:372–384. https://doi.org/10.1080/00173134.2021.1880629

    Article  Google Scholar 

  • Garreaud RD, Aceituno P (2001) Interannual rainfall variability over the South American Altiplano. J Clim 14(2):779

    Google Scholar 

  • Garreaud RD, Vuille M, Compagnucci R, Marengo J (2009) Present-day South American climate. Palaeogeogr Palaeoclimatol Palaeoecol 281:180–185. https://doi.org/10.1016/j.palaeo.2007.10.032

    Article  Google Scholar 

  • Gassman M, Covi M, Merino R, Tonti N, Curto L, Perez C (2022) Efecto del eclipse solar de diciembre de 2020 en la evolución de la brisa en un valle andino. Meteorologica 47:e009. https://doi.org/10.24215/1850468Xe009

    Article  Google Scholar 

  • Grill S, Franco Salvi VL, Salazar J (2013) Condiciones climáticas y ambientales durante el primer milenio de la era en el valle de Tafí (Tucumán, Argentina). Rev Bras Paleontol 16:495–506. https://doi.org/10.4072/rbp.2013.3.09

    Article  Google Scholar 

  • Grimm E (1987) CONISS: a FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Comput Geosci 13:13–35. https://doi.org/10.1016/0098-3004(87)90022-7

    Article  Google Scholar 

  • Grimm E (2004) TGView version 2.0.2. Illinois State Museum, Research and Collection Center, Springfield

    Google Scholar 

  • Hansen BCS, Seltzer GO, Wright HE Jr (1994) Late Quaternary vegetational change in the central Peruvian Andes. Palaeogeogr Palaeoclimatol Palaeoecol 109:263–285. https://doi.org/10.1016/0031-0182(94)90179-1

    Article  Google Scholar 

  • Heusser CJ (1971) Pollen and spores of Chile: modern types of Pteridophyta, Gymnospermae, and Angiospermae. The University of Arizona Press, Tucson

    Book  Google Scholar 

  • Hogg AG, Hua Q, Blackwell PG et al (2013) SHCal13 Southern hemisphere calibration, 0–50,000 years cal BP. Radiocarbon 55:1,889-1,903. https://doi.org/10.2458/azu_js_rc.55.16783

    Article  Google Scholar 

  • Hooper J, Marx SK, May J-H et al (2020) Dust deposition tracks late-Holocene shifts in monsoon activity and the increasing role of human disturbance in the Puna-Altiplano, northwest Argentina. Holocene 30:519–536. https://doi.org/10.1177/0959683619895814

    Article  Google Scholar 

  • Hurtado R, Fernández-Long ME, Serio LA, Portal MR, Valdiviezo Corte M (2013) Estudio de las precipitaciones en la región Noroeste de la Argentina. Agraria 7:69–73

    Google Scholar 

  • Jomelli V, Favier V, Rabatel A, Brunstein D, Hoffmann G, Francou B (2009) Fluctuations of glaciers in the tropical Andes over the last millennium and palaeoclimatic implications: a review. Palaeogeogr Palaeoclimatol Palaeoecol 281:269–282. https://doi.org/10.1016/j.palaeo.2008.10.033

    Article  Google Scholar 

  • Kellerhals T, Brütsch S, Sigl M, Knüsel S, Gäggeler HW, Schwikowski M (2010) Ammonium concentration in ice cores: a new proxy for regional temperature reconstruction? J Geophys Res Atmos 115:D16123. https://doi.org/10.1029/2009JD012603

    Article  Google Scholar 

  • Kock ST, Schittek K, Mächtle B et al (2020) Multi-centennial-scale variations of South American summer monsoon intensity in the Southern Central Andes (24–27°S) during the late Holocene. Geophys Res Lett 47:e2019GL084157. https://doi.org/10.1029/2019GL084157

    Article  Google Scholar 

  • Kołaczek P, Zubek S, Błaszkowski J, Mleczko P, Margielewski W (2013) Erosion or plant succession—how to interpret the presence of arbuscular mycorrhizal fungi (Glomeromycota) spores in pollen profiles collected from mires. Rev Palaeobot Palynol 189:29–37. https://doi.org/10.1016/j.revpalbo.2012.11.006

    Article  Google Scholar 

  • Kuentz A, Ledru M-P, Thouret J-C (2012) Environmental changes in the highlands of the western Andean Cordillera, southern Peru, during the Holocene. Holocene 22:1,215-1,226. https://doi.org/10.1177/0959683611409772

    Article  Google Scholar 

  • Kulemeyer J, Lupo L, Madozzo Jaén MC et al (2013) Desarrollo del Paisaje Holoceno en la Cuenca de El Bolsón: gente y ambiente en procesos de cambio y estabilidad. Diálogo Andino 41:25–44. https://doi.org/10.4067/S0719-26812013000100003

    Article  Google Scholar 

  • Ledrú M-P, Jomelli V, Samaniego P, Vuille M, Hidalgo S, Herrera M, Ceron C (2013) The medieval climate anomaly and the little ice age in the eastern Ecuadorian Andes. Clim Past 9:307–321. https://doi.org/10.5194/cp-9-307-2013

    Article  Google Scholar 

  • Liu K, Carl CA, Thompson LG (2005) Ice-core pollen record of climatic changes in the Central Andes during the last 400 yr. Quat Res 64:272–278. https://doi.org/10.1016/j.yqres.2005.06.001

    Article  Google Scholar 

  • Lupo L, Morales MR, Yacobaccio HD, Maldonado A, Grosjean M (2007) Cambios Ambientales en la Puna Jujeña durante los últimos 1200 años: Explorando su impacto en la economía pastoril. Pacarina 3:151–156

    Google Scholar 

  • Lupo LC, Bianchi MM, Aráoz E et al (2006) Climate and human impact during the past 2000 years as recorded in the Lagunas de Yala, Jujuy, northwestern Argentina. Quat Int 158:30–43. https://doi.org/10.1016/j.quaint.2006.05.015

    Article  Google Scholar 

  • Lupo LC, Kulemeyer JJ, Sánchez AC, Pereira E, Cortés RG (2015) Los archivos paleoambientales en el Borde Oriental de la Puna y sus respuestas a los cambios naturales y antrópicos durante el Holoceno. Noroeste Argentino Estudios Sociales Del NOA 16:39–68

    Google Scholar 

  • Lupo LC, Torres G, Fierro P et al (2018) El disturbio antrópico en los registros polínicos de montaña durante el Cuaternario tardío en el noroeste Argentino. In: Prieto AR (ed) Metodologías y estrategias del análisis palinológico del Cuaternario tardío: Publicación Electrónica de la Asociación Paleontológica Argentina 18. Asociación Paleontológica Argentina, Buenos Aires, pp 39–35

    Google Scholar 

  • Maenza RA, Compagnucci RH (2010) Simulación de la Pequeña Edad de Hielo usando el modelo EdGCM. Geoacta 35:78–91

    Google Scholar 

  • Malizia L, Pacheco S, Blundo C, Brown AD (2012) Caracterización altitudinal, uso y conservación de las Yungas Subtropicales de Argentina. Ecosistemas 21:53–73

    Google Scholar 

  • Markgraf V, D’Antoni HL (1978) Pollen Flora of Argentina: Modern Pollen and Spore Types of Pteridophyta, Gymnospermae, and Angiospermae. The University of Arizona Press, Tucson

    Google Scholar 

  • Meléndez AS, Kulemeyer JJ, Lupo LC, Quesada MN, Korstanje MA (2018) Paleoenvironments and human occupation in the El Bolsón Valley of northwest Argentina (province of Catamarca, dept. of Belén). J Archaeol Sci: Rep 18:758–768. https://doi.org/10.1016/j.jasrep.2017.10.041

    Article  Google Scholar 

  • Meneses RI, Ortuño T, Herrera SL et al (2015) Bofedales andinos. In: Moya MI, Meneses RI, Sarmiento J (eds) Historia natural de un Valle en Los Andes: La Paz, 2nd edn. Museo Nacional de Historia Natural, La Paz, pp 190–205

    Google Scholar 

  • Minetti J (1982) Régimen de frecuencia de precipitación sólida en la República Argentina y Antártida. Revista Geofísica 21:75–84

    Google Scholar 

  • Morales MS, Christie DA, Villalba R et al (2012) Precipitation changes in the South American Altiplano since 1300 ad reconstructed by tree-rings. Clim Past 8:653–666. https://doi.org/10.5194/cp-8-653-2012

    Article  Google Scholar 

  • Morrone O, Aliscioni SS, Zuloaga FO (2005) Análisis de la diversidad y distribución geográfica de la familia Poaceae en la Provincia de Jujuy, Argentina. Ann Missouri Bot Gard 92:595–639

    Google Scholar 

  • Munsell Soil Color Charts (1994) Munsell Color. Macbeth Division of Kollmorgen Instrument Corporation, Baltimore

    Google Scholar 

  • Musotto LL, Bianchinotti MV, Borromei AM (2013) Inferencias paleoecológicas a partir del análisis de microfósiles fúngicos en una turbera pleistoceno-holocena de Tierra del Fuego, Argentina. Rev Mus Argent Cienc Nat 15:89–98

    Article  Google Scholar 

  • Navarro G, Molina JA (2019) A floristic-ecological classification of the shrublands of the dry Bolivian Altiplano. Phytocoenologia 49:199–208. https://doi.org/10.1127/phyto/2019/0130

    Article  Google Scholar 

  • Neukom R, Luterbacher J, Villalba R et al (2010) Multi-centennial summer and winter precipitation variability in southern South America. Geophys Res Lett 37:L14708. https://doi.org/10.1029/2010GL043680

    Article  Google Scholar 

  • Neukom R, Luterbacher J, Villalba R et al (2011) Multiproxy summer and winter surface air temperature field reconstructions for southern South America covering the past centuries. Clim Dyn 37:35–51. https://doi.org/10.1007/s00382-010-0793-3

    Article  Google Scholar 

  • Olivera DE (2001) Sociedades agropastoriles tempranas: El Formativo Inferior del Noroeste Argentino. In: Berberián EE, Nielsen AE (eds) Historia Argentina Prehispánica. Editorial Brujas, Córdoba, pp 83–125

    Google Scholar 

  • Olivera DE, Tchilinguirian P, Grana L (2004) Paleoambiente y arqueología en la Puna Meridional argentina: archivos ambientales, escalas de análisis y registro arqueológico. Relaciones de la Sociedad Argentina de Antropología 29:229–247

    Google Scholar 

  • Oxman B, Tchilinguirian P, Yacobaccio HD, Lupo LC (2016) Nuevos análisis paleoambientales y sus implicancias arqueológicas durante la Pequeña Edad de Hielo en la Puna. Estudios Sociales Del NOA 16:13–38

    Google Scholar 

  • Oyarzabal M, Clavijo J, Oakley L et al (2018) Unidades de vegetación de la Argentina. Ecologia Austral 28:40–63. https://doi.org/10.25260/EA.18.28.1.0.399

    Article  Google Scholar 

  • Penalba OC, Rivera JA (2016) Precipitation response to El Niño/La Niña events in Southern South America—emphasis on regional drought occurrences. Adv Geosci 42:1–14. https://doi.org/10.5194/adgeo-42-1-2016

    Article  Google Scholar 

  • Peralta SM, Cremonte MB (2013) Expresiones materiales de las ocupaciones incaicas y preinkaicas en los valles de San Antonio (sur de Jujuy). In: Williams VI, Cremonte MB (eds) Al borde del imperio: Paisajes sociales, materialidad y memoria en áreas periféricas del noroeste argentino, 1st edn. Publicaciones de la SAA, Sociedad Argentina de Antropología, Buenos Aires, pp 37–56

    Google Scholar 

  • Rabatel A, Francou B, Jomelli V, Naveau P, Grancher D (2008) A chronology of the little ice age in the tropical Andes of Bolivia (16°S) and its implications for climate reconstruction. Quat Res 70:198–212. https://doi.org/10.1016/j.yqres.2008.02.012

    Article  Google Scholar 

  • Reimer PJ, Bard E, Bayliss A et al (2013) IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55:1,869-1,887. https://doi.org/10.2458/azu_js_rc.55.16947

    Article  Google Scholar 

  • Rixen A, Le Coq JF, Fallot A, Ruiz C, Schilinger R (2015) Análisis participativo de las dinámicas socio-ecológicas de la cuenca Perico-Manantiales. https://hal.archives-ouvertes.fr/hal-01119332v1. Accessed 8 December 2016

  • Schiferl JD, Bush MB, Silman MR, Urrego DH (2018) Vegetation responses to late Holocene climate changes in an Andean forest. Quat Res 89:60–74. https://doi.org/10.1017/qua.2017.64

    Article  Google Scholar 

  • Schittek K, Kock ST, Lücke A et al (2015) Environmental and climatic history in the NW Argentine Andes (24° S) over the last 2100 years inferred from a high-altitude peatland record. Clim Past Discuss 11:2,037-2,076. https://doi.org/10.5194/cpd-11-2037-2015

    Article  Google Scholar 

  • Schittek K, Kock ST, Lücke A et al (2016) A high-altitude peatland record of environmental changes in the NW Argentine Andes (24º S) over the last 2100 years. Clim Past 12:1,165-1,180. https://doi.org/10.5194/cp-12-1165-2016

    Article  Google Scholar 

  • Seluchi ME, Saulo AC, Nicolini M, Satyamurty P (2003) The northwestern Argentinean low: a study of two typical events. Mon Weather Rev 131:2,361-2,378

    Article  Google Scholar 

  • Soreng RJ, Peterson PM, Davidse G et al (2003) Catalogue of New World Grasses (Poaceae): IV. Subfamily Pooideae. Contributions from the United States National Herbarium 48. Smithsonian Institution, Department of Systematic Biology, Washington

  • Stockmarr J (1971) Tablets with spores used in absolute pollen analysis. Pollen Spores 13:615–621

    Google Scholar 

  • Tálamo A, Tolaba J, Trucco C, Acuña E (2010) Unidades de vegetación y composición florística en sectores del Altiplano del noroeste de Argentina. I. Ambientes De Estepas Ecología En Bolivia 45:4–19

    Google Scholar 

  • Tang LY, Mao LM, Lü XM et al (2013) Palaeoecological and palaeoenvironmental significance of some important spores and micro-algae in Quaternary deposits. Chinese Sci Bull 58:3,125-3,139. https://doi.org/10.1007/s11434-013-5747-9

    Article  Google Scholar 

  • Tauber H (1967) Differential pollen dispersión and filtration. In: Cushing EJ, Wrigth HE (eds) Quaternary paleoecology. Yale University Press, New Haven, pp 131–141

    Google Scholar 

  • Teruel A, Lagos M (2006) Jujuy en la historia. De la colonia al siglo XX. Unidad de Investigación en Historia Regional, Facultad de Humanidades y Ciencias Sociales, Editorial de la Universidad Nacional de Jujuy, Jujuy, Argentina

  • Thompson LG, Mosley-Thompson E, Dansgaard W, Grootes PM (1986) The Little Ice Age as recorded in the stratigraphy of the tropical Quelccaya Ice Cap. Science 234:361–364. https://doi.org/10.1126/science.234.4774.361

    Article  Google Scholar 

  • Thompson LG, Mosley-Thompson E, Davis ME et al (1995) Late glacial stage and Holocene tropical ice core records from Huascarán, Peru. Science 269:46–50. https://doi.org/10.1126/science.269.5220.46

    Article  Google Scholar 

  • Torres GR (2017) Patrones de transporte y depósito polínico de especies trazadoras del Bosque montano de Yungas: Implicancias paleoambientales durante el Cuaternario del Noroeste Argentino. Dissertation, National University of Salta, Salta

  • Torres GR, Pereira E de los A (2018) Monitoring of the airborne pollen diversity in the urban area of San Salvador de Jujuy, Argentina. Biodivers Int J 2:67–73. https://doi.org/10.15406/bij.2018.02.00046

  • Torres GR, Fierro PT, Sánchez AC, Lupo LC (2019a) Relationship between vegetation assemblages and modern pollen in semiarid environments of Jujuy, northwestern Argentina. Palynology 43:494–506. https://doi.org/10.1080/01916122.2018.1476925

    Article  Google Scholar 

  • Torres GR, Pérez CF, Lupo LC (2019b) Altitudinal patterns of wind transport and deposition of Yungas tree pollen in northwestern Argentina: implications for interpreting the Quaternary fossil record. Palaeogeogr Palaeoclimatol Palaeoecol 520:66–77. https://doi.org/10.1016/j.palaeo.2019.01.013

    Article  Google Scholar 

  • Ulibarri EA (1996) Fabaceae Lindley Tribu 10. Adesmiae (Benth.) Hutchinson. Flora del Valle de Lerma. Aportes Botánicos de Salta (Argentina). Serie Flora 4:1–11

    Google Scholar 

  • Villota A, Behling H (2014) Late Glacial and Holocene environmental change inferred from the páramo of Cajamuna in the Podocarpus National Park, Southern Ecuador. Caldasia 36:345–364. https://doi.org/10.15446/caldasia/v36n2.47491

    Article  Google Scholar 

  • Vuille M, Burns SJ, Taylor BL et al (2012) A review of the South American monsoon history as recorded in stable isotopic proxies over the past two millennia. Clim Past 8:1309–1321. https://doi.org/10.5194/cp-8-1309-2012

    Article  Google Scholar 

  • Weng C, Bush MB, Cheptow-Lusty AJ (2004) Holocene change of Andean Alder (Alnus acuminata) in highland Ecuador and Peru. J Quat Sci 19:685–691. https://doi.org/10.1002/jqs.882

    Article  Google Scholar 

  • Yan H, Sun L, Wang Y, Huang W, Qiu S, Yang C (2011) A record of the Southern Oscillation Index for the past 2,000 years from precipitation proxies. Nat Geosci 4:611–614. https://doi.org/10.1038/ngeo1231

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Ralph Schillinger (Asociación Bosque Modelo Jujuy), Fabio Flores and Magalí Méndez for assisting with the fieldwork. We also thank the inhabitants of Cerro Negro for hosting us in the field campaigns, Natalia Batallanos for processing the samples and Julio Kulemeyer for his advice in sedimentological interpretations and for lending us the drilling equipment. We also wish to express our gratitude to two anonymous reviewers for their valuable contributions to improve the manuscript.

Funding

This work was funded by the National Council for Science and Technical Investigations [CONICET-PIO#094], the National Agency for Science and Technology Promotion [PICT 2015-#3047], and the National University of Jujuy [Secter-Unju A/0198 and A/B078].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gonzalo Torres.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Responsible Editor: W. D. Gosling

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torres, G., Lupo, L. & Pérez, C. Reconstruction of the environmental conditions for the past 2,000 years in the Perico River basin (NW Argentina) based on fossil pollen records. Veget Hist Archaeobot 32, 235–251 (2023). https://doi.org/10.1007/s00334-022-00900-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00334-022-00900-2

Keywords

Navigation