Skip to main content

Advertisement

Log in

Palynological evidence for the temporal stability of the plant community in the Yellow River Source Area over the last 7,400 years

  • Original Article
  • Published:
Vegetation History and Archaeobotany Aims and scope Submit manuscript

Abstract

The terrestrial ecosystem in the Yellow River Source Area (YRSA) is sensitive to climate change and human impacts, although past vegetation change and the degree of human disturbance are still largely unknown. A 170-cm-long sediment core covering the last 7,400 years was collected from Lake Xingxinghai (XXH) in the YRSA. Pollen, together with a series of other environmental proxies (including grain size, total organic carbon (TOC) and carbonate content), were analysed to explore past vegetation and environmental changes for the YRSA. Dominant and common pollen components—Cyperaceae, Poaceae, Artemisia, Chenopodiaceae and Asteraceae—are stable throughout the last 7,400 years. Slight vegetation change is inferred from an increasing trend of Cyperaceae and decreasing trend of Poaceae, suggesting that alpine steppe was replaced by alpine meadow at ca. 3.5 ka cal bp. The vegetation transformation indicates a generally wetter climate during the middle and late Holocene, which is supported by increased amounts of TOC and Pediastrum (representing high water-level) and is consistent with previous past climate records from the north-eastern Tibetan Plateau. Our results find no evidence of human impact on the regional vegetation surrounding XXH, hence we conclude the vegetation change likely reflects the regional climate signal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The pollen dataset for Xingxinghai Lake is currently stored in the National Tibetan Plateau/Third Pole Environment Data Center (TPDC) and available at: https://doi.org/10.11888/Paleoenv.tpdc.271828.

References

  • Anderson RS, Homola RL, Davis RB, Jacobson GL Jr (1984) Fossil remains of the mycorrhizal fungal Glomus fasciculatum complex in postglacial lake sediments from Maine. Can J Bot 62:2,325-2,328

    Article  Google Scholar 

  • Appleby PG, Nolan PJ, Gifford DW, Godfrey MJ, Oldfield F, Anderson NJ, Battarbee RW (1986) 210Pb dating by low background gamma counting. Hydrobiologia 141:21–27

    Article  Google Scholar 

  • Blaauw M, Christen JA (2011) Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal 6:457–474

    Article  Google Scholar 

  • Blaauw M, Christen JA, Aquino Lopez MA et al (2021) rbacon: age-depth modelling using Bayesian statistics. https://cran.r-project.org/web/packages/rbacon/index.html.Accessed Jan 2020

  • Cao X, Tian F, Li K, Ni J (2020) Atlas of pollen and spores for common plants from the east Tibetan Plateau. National Tibetan Plateau Data Center, Beijing

    Google Scholar 

  • Cao X, Tian F, Li K, Ni J, Yu X, Liu L, Wang N (2021) Lake surface sediment pollen dataset for the alpine meadow vegetation type from the eastern Tibetan Plateau and its potential in past climate reconstructions. Earth Syst Sci Data 13:3,525-3,537

    Article  Google Scholar 

  • Chao A, Gotelli NJ, Hsieh TC, Sander EL, Ma KH, Colwell RK, Ellison AM (2014) Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol Monogr 84:45–67

    Article  Google Scholar 

  • Chen FH, Chen XM, Chen JH et al (2014) Holocene vegetation history, precipitation changes and Indian Summer Monsoon evolution documented from sediments of Xingyun Lake, south-west China. J Quat Sci 29:661–674

    Article  Google Scholar 

  • Chen X, Huang X, Tang L, Chen F (2016) A preliminary investigation of relationship between modern Pediastrum and the level of Xingyun Lake, central Yunnan, and its implications for the interpretation of the fossil record. Chin Sci Bull 61:2,395-2,408 (in Chinese with English abstract)

    Article  Google Scholar 

  • Cheng J, Zhang XJ, Tian MZ et al (2004) Climate of the Holocene Megathermal in the Source Area of the Yellow River, Northeast Tibet. Geol Rev 3:330–337

    Google Scholar 

  • Cour P, Zheng Z, Duzer D, Calleja M, Yao Z (1999) Vegetational and climatic significance of modern pollen rain in northwestern Tibet. Rev Palaeobot Palynol 104:183–204

    Article  Google Scholar 

  • Faegri K, Iversen J (1989) Finding the grain: laboratory technique. In: Faegri K, Kaland PE, Krzywinski K (eds) Textbook of pollen analysis, 4th edn. Wiley, Chichester, pp 69–89

    Google Scholar 

  • Feurdean A, Marinova E, Nielsen AB et al (2015) Origin of the forest steppe and exceptional grassland diversity in Transylvania (central-eastern Europe). J Biogeogr 42:951–963

    Article  Google Scholar 

  • Grimm EC (1987) CONISS: a FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Comput Geosci 13:13–35

    Article  Google Scholar 

  • Grimm EC (1991) TILIA and TILIA-GRAPH computer programs. Illinois State Museum, Springfield

    Google Scholar 

  • Han M (2015) Late Holocene vegetation and climate evolution in the source region of Yellow river. Master thesis, Qinghai University, Qinghai

  • Herzschuh U (2006) Palaeo-moisture evolution in monsoonal Central Asia during the last 50,000 years. Quat Sci Rev 25:163–178

    Article  Google Scholar 

  • Herzschuh U, Birks HJB (2010) Evaluating the indicator value of Tibetan Plateau taxa for modern vegetation and climate. Rev Palaeobot Palynol 160:197–208

    Article  Google Scholar 

  • Herzschuh U, Winter K, Wünnemann B, Li S (2006) A general cooling trend on the central Tibetan Plateau throughout the Holocene recorded by the Lake Zigetang pollen spectra. Quat Int 154–155:113–121

    Article  Google Scholar 

  • Herzschuh U, Kramer A, Mischke S, Zhang C (2009) Quantitative climate and vegetation trends since the late glacial on the northeastern Tibetan Plateau deduced from Koucha Lake pollen spectra. Quat Res 71:162–171

    Article  Google Scholar 

  • Herzschuh U, Birks HJB, Ni J, Zhao Y, Liu H, Liu X, Grosse G (2010) Holocene land-cover changes on the Tibetan Plateau. Holocene 20:91–104

    Article  Google Scholar 

  • Herzschuh U, Ni J, Birks HJB, Böhner J (2011) Driving forces of mid-Holocene vegetation shifts on the upper Tibetan Plateau, with emphasis on changes in atmospheric CO2 concentrations. Quat Sci Rev 30:1,907-1,917

    Article  Google Scholar 

  • Hill MO (1973) Diversity and evenness: a unifying notation and its consequences. Ecology 54:427–432

    Article  Google Scholar 

  • Hsieh TC, Ma KH, Chao A (2016) iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol Evol 7:1,451-1,456

    Article  Google Scholar 

  • Jackson ST, Lyford ME (1999) Pollen dispersal models in Quaternary plant ecology: assumptions, parameters and prescriptions. Bot Rev 65:39–75

    Article  Google Scholar 

  • Jiang W, Guo Z, Sun X et al (2006) Reconstruction of climate and vegetation changes of Lake Bayanchagan (Inner Mongolia): Holocene variability of the East Asian monsoon. Quat Res 65:411–420

    Article  Google Scholar 

  • Jost L (2007) Partitioning diversity into independent alpha and beta components. Ecology 88:2,427-2,439

    Article  Google Scholar 

  • Kramer A, Herzschuh U, Mischke S, Zhang C (2010) Late glacial vegetation and climate oscillations on the southeastern Tibetan Plateau inferred from the Lake Naleng pollen profile. Quat Res 73:324–335

    Article  Google Scholar 

  • Li H, Xiao P, Feng X, Wan W, Ma R, Duan H (2010) Lake changes in spatial evolution and area in source region of Three Rivers in recent 30 years. J Lake Sci 22:862–873

    Google Scholar 

  • Li K, Liu X, Wang Y, Herzschuh U, Ni J, Liao M, Xiao X (2017) Late Holocene vegetation and climate change on the southeastern Tibetan Plateau: implications for the Indian Summer Monsoon and links to the Indian Ocean Dipole. Quat Sci Rev 177:235–245

    Article  Google Scholar 

  • Liang E, Wang Y, Piao S et al (2016) Species interactions slow warming-induced upward shifts of treelines on the Tibetan Plateau. Proc Natl Acad Sci USA 113:4,380-4,385

    Article  Google Scholar 

  • Liu H, Park Williams A, Allen CD et al (2013) Rapid warming accelerates tree growth decline in semi-arid forests of Inner Asia. Glob Chang Biol 19:2,500-2,510

    Article  Google Scholar 

  • Lu X, Herrmann M, Mosbrugger V, Yao T, Zhu L (2010) Airborne pollen in the Nam Co Basin and its implication for palaeoenvironmental reconstruction. Rev Palaeobot Palynol 163:104–112

    Article  Google Scholar 

  • Lu S, Wu X, Hou C et al (2016) C, N and P stoichiometry in stars sea water body of Sanjiangyuan. J Sichuan Agric Univ 34:221–226 (in Chinese with English abstract)

    Google Scholar 

  • Miehe G, Miehe S, Kaiser K, Reudenbach C, Behrendes L, Duo L, Schlütz F (2009) How old is pastoralism in Tibet? An ecological approach to the making of a Tibetan landscape. Palaeogeogr Palaeoclimatol Palaeoecol 276:130–147

    Article  Google Scholar 

  • Miehe G, Miehe S, Böhner J et al (2014) How old is the human footprint in the world’s largest alpine ecosystem? A review of multiproxy records from the Tibetan Plateau from the ecologists’ viewpoint. Quat Sci Rev 86:190–209

    Article  Google Scholar 

  • Miehe G, Schleuss P-M, Seeber E et al (2019) The Kobresia pygmaea ecosystem of the Tibetan highlands—Origin, functioning and degradation of the world’s largest pastoral alpine ecosystem: Kobresia pastures of Tibet. Sci Total Environ 648:754–771

    Article  Google Scholar 

  • Mischke S, Kramer M, Zhang C, Shang H, Herzschuh U, Erzinger J (2008) Reduced early Holocene moisture availability in the Bayan Har Mountains, northeastern Tibetan Plateau, inferred from a multi-proxy lake record. Palaeogeogr Palaeoclimtol Palaeoecol 267:59–76

    Article  Google Scholar 

  • Mischke S, Zhang C, Börner A, Herzschuh U (2010) Lateglacial and Holocene variation in aeolian sediment flux over the northeastern Tibetan Plateau recorded by laminated sediments of a saline meromictic lake. J Quat Sci 25:162–177

    Article  Google Scholar 

  • Ning D, Jiang Q, Ji M, Xu Y, Kuai X, Ge Y, Zhao W (2021) Holocene hydroclimate changes on the north-eastern Tibetan Plateau inferred from geochemical records in Lake Gyaring. J Quat Sci. https://doi.org/10.1002/jqs.3383

    Article  Google Scholar 

  • Oksanen J, Kindt R, Legendre P, O’Hara B, Stevens MHH (2007) The vegan package. Commun Ecol Package 10:631–637

    Google Scholar 

  • Prentice IC (1980) Multidimensional scaling as a research tool in quaternary palynology: a review of theory and methods. Rev Palaeobot Palynol 31:71–104

    Article  Google Scholar 

  • Prentice IC (1985) Pollen representation, source area, and basin size: toward a unified theory of pollen analysis. Quat Res 23:76–86

    Article  Google Scholar 

  • Qin F, Bunting MJ, Zhao Y, Li Q, Cui Q, Ren W (2020) Relative pollen productivity estimates for alpine meadow vegetation, Northeastern Tibetan Plateau. Veget Hist Archaeobot 29:447–462

    Article  Google Scholar 

  • R Core Team (2021) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Ren W, Yao T, Yang X, Joswiak DR (2013) Implications of variations in δ18O and δD in precipitation at Madoi in the eastern Tibetan Plateau. Quat Int 313:56–61

    Article  Google Scholar 

  • Schlütz F, Lehmkuhl F (2009) Holocene climatic change and the nomadic Anthropocene in Eastern Tibet: palynological and geomorphological results from Nianbaoyeze Mountains. Quat Sci Rev 28:1,449-1,471

    Article  Google Scholar 

  • Shen W, Zou C, Liu D et al (2015) Climate-forced ecological changes over the Tibetan Plateau. Cold Reg Sci Technol 114:27–35

    Article  Google Scholar 

  • Shen M, Piao S, Chen X et al (2016) Strong impacts of daily minimum temperature on the green-up date summer greenness of the Tibetan Plateau. Glob Chang Biol 22:3,057-3,066

    Article  Google Scholar 

  • Sugita S (1994) Pollen representation of vegetation in Quaternary sediments: theory and method in patchy vegetation. J Ecol 82:881–897

    Article  Google Scholar 

  • Sun X, Zhao Y, Li Q (2017) Holocene peatland development and vegetation changes in the Zoige Basin, Eastern Tibetan Plateau. Sci China Earth Sci 60:1,826-1,837

    Article  Google Scholar 

  • Tang L, Mao L, Shu J, Li C, Shen C, Zhou Z (2017) Atlas of quaternary pollen and spores in China. Science Press, Beijing

    Google Scholar 

  • Ter Braak CJF, Prentice IC (2004) A theory of gradient analysis. Adv Ecol Res 34:235–282

    Article  Google Scholar 

  • Tomscha SA, Sutherland IJ, Renard D et al (2016) A guide to historical data sets for reconstructing ecosystem service change over time. Bioscience 66:747–762

    Article  Google Scholar 

  • Van Geel B, Coope GR, van der Hammen T (1989) Palaeoecology and stratigraphy of the Late Glacial section at Usselo (The Netherlands). Rev Palaeobot Palynol 60:25–129

    Article  Google Scholar 

  • Wang L (2004) Feature analysis and recover pattern of degenerate Grassland of source region of Yellow River. Master thesis, Gansu Agricultural University, Gansu

  • Wang Y, Herzschuh U (2011) Reassessment of Holocene vegetation change on the upper Tibetan Plateau using the pollen-based REVEALS model. Rev Palaeobot Palynol 168:31–40

    Article  Google Scholar 

  • Wang F, Qian N, Zhang Y, Yang H (1995) Pollen flora of China. Science Press, Beijing

    Google Scholar 

  • Wang Y, Liu X, Herzschuh U, Yang X, Birks HJB, Zhang E, Tong G (2012) Temporally changing drivers for late-Holocene vegetation changes on the northern Tibetan Plateau. Palaeogeogr Palaeoclimatol Palaeoecol 353–355:10–20

    Article  Google Scholar 

  • Wei H, Hou G, Fan Q et al (2019) Using coprophilous fungi to reconstruct the history of pastoralism in the Qinghai Lake Basin, Northeastern Qinghai-Tibetan Plateau. Prog Phys Geogr 44:70–93

    Article  Google Scholar 

  • Wischnewski J, Mischke S, Wang Y, Herzschuh U (2011) Reconstructing climate variability on the northeastern Tibetan Plateau since the last Lateglacial—a multi-proxy, dual-site approach comparing terrestrial and aquatic signals. Quat Sci Rev 30:82–97

    Article  Google Scholar 

  • Wu S, Chang G, Li F, Xiao J, Guo A (2008) Recent lake changes in Maduo County, source region of the Yellow River. J Lake Sci 20:364–368 (in Chinese with English abstract)

    Article  Google Scholar 

  • Wu D, Chen F, Li K, Xie Y, Zhang J, Zhou A (2016) Effects of climate change and human activity on lake shrinkage in Gonghe Basin of northeastern Tibetan Plateau during the past 60 years. J Arid Land 8:479–491

    Article  Google Scholar 

  • Yan D, Wünnemann B, Zhang Y, Long H, Stauch G, Sun Q, Cao G (2018) Response of lake-catchment processes to Holocene climate variability: evidence from the NE Tibetan Plateau. Quat Sci Rev 201:261–279

    Article  Google Scholar 

  • Yan Q, Owen LA, Zhang Z, Jiang N, Zhang R (2020) Deciphering the evolution and forcing mechanisms of glaciation over the Himalayan-Tibetan orogen during the past 20,000 years. Earth Planet Sci Lett 541:116295

    Article  Google Scholar 

  • Yao T, Xue Y, Chen D et al (2019) Recent Third Pole’s rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment: multidisciplinary approach with observations, modeling, and analysis. Bull Am Meteorol Soc 100:423–444

    Article  Google Scholar 

  • Zhang W (2011) The research of Kobresia tibetica swamping meadow’s degeneration and dynamic monitoring technology for the Yellow River source zone. Master thesis, Qinghai University, Qinghai

  • Zhang Y, Kong Z, Yang Z, Wang L, Duan X (2017) Surface pollen distribution from alpine vegetation in eastern Tibet. China Sci Rep 7:586

    Article  Google Scholar 

  • Zhang R, Tian F, Xu Q, Zhou X, Liu X, Cao X (2020) Representation of modern pollen assemblage to vertical variations of vegetation and climate in the Yadong area, eastern Himalaya. Quat Int 536:45–51

    Article  Google Scholar 

  • Zhang Y, Li Y, Liu L, Wang N, Cao X (2022) No evidence of human disturbance to vegetation in the Zoige Region (north-eastern Tibetan Plateau) in the last millennium until recent decades. Palaeogeogr Palaeoclimatol Palaeoecol 589:110843

    Article  Google Scholar 

  • Zhao Y, Yu Z, Chen F, Ito E, Zhao C (2007) Holocene vegetation and climate history at Hurleg Lake in the Qaidam Basin, Northwest China. Rev Palaeobot Palynol 145:275–288

    Article  Google Scholar 

  • Zhao Y, Yu Z, Liu X, Zhao C, Chen F, Zhang K (2010) Late holocene vegetation and climate oscillations in the Qaidam Basin of the Northeastern Tibetan Plateau. Quat Res 73:59–69

    Article  Google Scholar 

  • Zhao Y, Yu Z, Zhao W (2011) Holocene vegetation and climate histories in the eastern Tibetan Plateau: controls by insolation-driven temperature or monsoon-derived precipitation changes? Quat Sci Rev 30:1,173-1,184

    Article  Google Scholar 

  • Zhao Y, Tzedakis PC, Li Q et al (2020) Evolution of vegetation and climate variability on the Tibetan Plateau over the past 1.74 million years. Sci Adv 6:61–93

    Article  Google Scholar 

  • Zhao W, Chen C, Jiang Q et al (2021) Holocene hydroclimate in the source region of the Yellow River: a new sediment record from Lake Gyaring, NE Tibetan Plateau. J Asian Earth Sci 205:104601

    Article  Google Scholar 

Download references

Acknowledgements

The XXH sediment core was collected under Ulrike Herzschuh’s leadership and funding by Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research. This research was also supported by the Basic Science Center for Tibetan Plateau Earth System (BSCTPES, NSFC project No. 41988101), the National Natural Science Foundation of China (Grant No. 42071107 and 41877459). Cathy Jenks provided help with language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Tian.

Additional information

Communicated by Y. Zhao.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 37 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, F., Qin, W., Zhang, R. et al. Palynological evidence for the temporal stability of the plant community in the Yellow River Source Area over the last 7,400 years. Veget Hist Archaeobot 31, 549–558 (2022). https://doi.org/10.1007/s00334-022-00870-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00334-022-00870-5

Keywords

Navigation