Advertisement

From bog to fen: palaeoecological reconstruction of the development of a calcareous spring fen on Saaremaa, Estonia

  • Ansis BlausEmail author
  • Triin Reitalu
  • Leeli Amon
  • Jüri Vassiljev
  • Tiiu Alliksaar
  • Siim Veski
Original Article

Abstract

This study of the Kanna calcareous spring fen on Saaremaa, the largest island of Estonia, elucidates its history of fen development and vegetation diversity over the last 9,200 years. Pollen, spores, non-pollen palynomorphs, macrofossils, loss-on-ignition and humification index analyses were carried out to reconstruct fen succession, vegetation development, environmental changes and human impact. Hierarchical clustering, ordination analysis and linear regression were applied to examine the vegetation composition and richness patterns through time and to identify the potential environmental drivers underlying these patterns. Our results suggest reverse mire development from bog to fen, a rare occurrence and contrary to typical mire autogenic succession from groundwater fed to rainwater fed. Kanna developed as a small bog for the first 2,000 years from 9,200 to 7,200 cal yrs bp. Changes to the hydrological regime around 7,200 cal yrs bp, due to a warmer and drier climate and land uplift, caused a change from an ombrotrophic to a minerotrophic environment. Typical spring fen characteristics developed ca. 5,000 cal yrs bp and continued until ca. 400 cal yrs bp, when the fen was fed by calcareous mineral-rich groundwater and reached very high floristic diversity with various calciphilous and relict plant taxa. We conclude that general changes in the Kanna fen succession, vegetation community and diversity are associated with climatic changes. The present high diversity of the fen is a result of a long-term stable fen environment, which may have been even higher in the past. However, the pollen richness has decreased during the last 400 years, possibly due to human or natural factors.

Keywords

Calcareous fen Mire succession Holocene Pollen richness Climate Human impact 

Notes

Acknowledgements

The authors are grateful to Mari Reitalu for comments on the recent history of the study site. We thank Hans Renssen for providing the simulated climate data. The research was carried out with the financial support of the Eesti Teadusagentuur (Estonian Research Council, PUT1173, IUT1-8, PRG323).

Supplementary material

334_2019_748_MOESM1_ESM.pdf (99 kb)
Supplementary material 1 (PDF 99 kb)

References

  1. Alliksaar T (2000) Spatial and temporal variability of the distribution of spherical fly-ash particles in sediments in Estonia. (Dissertations on Natural Sciences 4) Tallinn Pedagogical University, TallinnGoogle Scholar
  2. Ammann B, Wright HE, Stefanova V, van Leeuwen JFN, van der Knaap WO, Colombaroli D, Tinner W (2013) The role of peat decomposition in patterned mires: a case study from the central Swiss Alps. Preslia 85:317–332Google Scholar
  3. Andersen ST (1970) The relative pollen productivity and pollen representation of north European trees, and correction factors for tree pollen spectra. Danmarks Geologiske Undersøgelse (2. Række nr. 96) Reitzel, KopenhagenGoogle Scholar
  4. Berglund BE, Ralska-Jasiewiczowa M (1986) Pollen analysis and pollen diagrams. In: Berglund BE (ed) Handbook of Holocene palaeoecology and palaeohydrology. Wiley, Chichester, pp 455–484Google Scholar
  5. Berglund BE, Sandgren P, Barnekow L, Hannon G, Jiang H, Skog G, Yu S-Y (2005) Early Holocene history of the Baltic Sea, as reflected in coastal sediments in Blekinge, southeastern Sweden. Quat Int 130:111–139CrossRefGoogle Scholar
  6. Beug H-J (2004) Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. Pfeil, MünchenGoogle Scholar
  7. Birks HJB, Line JM (1992) The use of rarefaction analysis for stimating palynological richness from quaternary pollen-analytical data. Holocene 2:1–10.  https://doi.org/10.1177/095968369200200101 CrossRefGoogle Scholar
  8. Bobbink R, Beltman B, Verhoeven JTA, Whigham TF (eds) (2006) Wetlands: functioning, biodiversity conservation, and restoration. Springer, Berlin.  https://doi.org/10.1007/978-3-540-33189-6 Google Scholar
  9. Boyle JF (2004) A comparison of two methods for estimating the organic matter content of sediments. J Paleolimnol 31:125–127CrossRefGoogle Scholar
  10. Bragg OM, Lindsay R (eds) (2003) Strategy and action plan for mire and peatland conservation in central Europe. Wetlands International, Wageningen. https://www.wetlands.org/publications.aspx
  11. Breitsameter L, Kayser M, Strodthoff J, Müller J, Isselstein J (2017) Performance of extensive cattle stocking on a reclaimed minerotrophic wet grassland. Mires Peat 19:1–10.  https://doi.org/10.19189/MaP.2015.OMB.194 Google Scholar
  12. Bronk Ramsey C (2008) Deposition models for chronological records. Quat Sci Rev 27:42–60CrossRefGoogle Scholar
  13. Bronk Ramsey C (2009) Bayesian analysis of radiocarbon dates. Radiocarbon 51:337–360CrossRefGoogle Scholar
  14. Bunting MJ, Farrell M, Broström A et al (2013) Palynological perspectives on vegetation survey: a critical step for model-based reconstruction of quaternary land cover. Quat Sci Rev 82:41–55.  https://doi.org/10.1016/j.quascirev.2013.10.006 CrossRefGoogle Scholar
  15. Chambers FM, van Geel B, van der Linden M (2011a) Considerations for the preparation of peat samples for palynology, and for the counting of pollen and non-pollen palynomorphs. Mires Peat. https://www.mires-and-peat.net/
  16. Chambers FM, Beilman DW, Yu Z (2011b) Methods for determining peat humification and for quantifying peat bulk density, organic matter and carbon content for palaeostudies of climate and peatland carbon dynamics. Mires Peat 7:1–10Google Scholar
  17. Charman DJ, Blundell A, Members Accrotelm (2007) A new European testate amoebae transfer function for palaeohydrological reconstruction on ombrotrophic peatlands. J Quat Sci 22:209–221CrossRefGoogle Scholar
  18. Chimner RA, Cooper DJ, Wurster FC, Rochefort L (2017) An overview of peatland restoration in North America: where are we after 25 years? Rest Ecol 25:283–292.  https://doi.org/10.1111/rec.12434 CrossRefGoogle Scholar
  19. Clymo RS (1963) Ion exchange in Sphagnum and its relation to bog ecology. Ann Bot 27:309–324.  https://doi.org/10.1093/oxfordjournals.aob.a083847 CrossRefGoogle Scholar
  20. Cook EJ, van Geel B, van der Kaars S, van Arkel J (2011) A review of the use of non-pollen palynomorphs in palaeoecology with examples from Australia. Palynology 35:155–178CrossRefGoogle Scholar
  21. Council of the European Communities (1992) Council directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. Off J Eur Communities L206:19Google Scholar
  22. Cugny C, Mazier F, Galop D (2010) Modern and fossil non-pollen palynomorphs from the Basque mountains (western Pyrenees, France): the use of coprophilous fungi to reconstruct pastoral activity. Veget Hist Archaeobot 19:391–408.  https://doi.org/10.1007/s00334-010-0242-6 CrossRefGoogle Scholar
  23. Dean WE (1974) Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss-on-ignition: comparison with other methods. J Sediment Petrol 44:242–248Google Scholar
  24. Dombrovskaya AV, Koronieva MM, Tyuremnov SN (1959) Aтлac pacтитeльныx ocтaткoв вcтpeчaeмыx в тopфe (Atlas of plant remains found in peat, in Russian). Gosudarstvennoe Energetitcheskoe Izdateljstvo, MoscowGoogle Scholar
  25. Ebersohn C, Eicker A (1992) Trichodelitsclzia microspora, a new coprophilous species from South Africa. S Afr J Bot 58:145–146.  https://doi.org/10.1016/S0254-6299(16)30859-6 CrossRefGoogle Scholar
  26. Eesti elu (1940) Nõudmine turbale suurenenud (increased demand on peat, in Estonian). Uus Eesti no 141, May 29, 1940Google Scholar
  27. Fægri K, Iversen J (1989) In: Fægri K, Kaland PE, Krzywinski K (eds) Textbook of pollen analysis, 4th edn. Wiley, ChichesterGoogle Scholar
  28. Faith DP, Minchin PR, Belbin L (1987) Compositional dissimilarity as a robust measure of ecological distance. Vegetatio 69:57–68CrossRefGoogle Scholar
  29. Felde VA, Peglar SM, Bjune AE, Grytnes JA, Birks HJB (2016) Modern pollen-plant richness and diversity relationships exist along a vegetational gradient in southern Norway. Holocene 26:163–175.  https://doi.org/10.1177/0959683615596843 CrossRefGoogle Scholar
  30. Gałka M, Aunina L, Tobolski K, Feurdean A (2016) Development of rich fen on the SE Baltic coast, Latvia, during the Last 7500 Years, using paleoecological proxies: implications for plant community development and paleoclimatic research. Wetlands 36:689–703.  https://doi.org/10.1007/s13157-016-0779-y CrossRefGoogle Scholar
  31. Gałka M, Aunina L, Feurdean A, Hutchinson S, Kołaczek P, Apolinarska K (2017) Rich fen development in CE Europe, resilience to climate change and human impact over the last ca. 3500 years. Palaeogeogr Palaeoclimatol Palaeoecol 473:57–72.  https://doi.org/10.1016/j.palaeo.2017.02.030 CrossRefGoogle Scholar
  32. Gałka M, Feurdean A, Hutchinson S, Milecka K, Tantau I, Apolinarska K (2018) Response of a spring-fed fen ecosystem in Central Eastern Europe (NW Romania) to climate changes during the last 4000 years: a high resolution multi-proxy reconstruction. Palaeogeogr Palaeoclimatol Palaeoecol 504:170–185.  https://doi.org/10.1016/j.palaeo.2018.05.027 CrossRefGoogle Scholar
  33. Giesecke T, Wolters S, Jahns S, Brande A (2012) Exploring Holocene changes in palynological richness in northern Europe—did postglacial immigration matter? PLoS ONE 7:e51624.  https://doi.org/10.1371/journal.pone.0051624 CrossRefGoogle Scholar
  34. Glina B, Bogacz A, Gulyás M, Zawieja B, Gajewski P, Kaczmarek Z (2016) The effect of long-term forestry drainage on the current state of peatland soils: a case study from the Central Sudetes, SW Poland. Mires Peat.  https://doi.org/10.19189/MaP.2016.OMB.239 Google Scholar
  35. Grimm EC (1987) CONISS: a FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Comput Geosci 13:13–35CrossRefGoogle Scholar
  36. Grimm EC (2011) TILIA 1.7.16 software. Illinois State Museum, Research and Collection Center, SpringfieldGoogle Scholar
  37. Hájek M, Horsák M, Tichý L, Hájková P, Dítě D, Jamrichová E (2011) Testing a relict distributional pattern of fen plant and terrestrial snail species at the Holocene scale: a null model approach. J Biogeogr 38:742–755CrossRefGoogle Scholar
  38. Hájková P, Grootjans A, Lamentowicz M et al (2012a) How a Sphagnum fuscum-dominated bog changed into a calcareous fen: the unique Holocene history of a Slovak spring-fed mire. J Quat Sci 27:233–243.  https://doi.org/10.1002/jqs.1534 CrossRefGoogle Scholar
  39. Hájková P, Horsák M, Hájek M, Lacina A, Buchtová H, Pelánková B (2012b) Origin and contrasting succession pathways of the Western Carpathian calcareous fens revealed by plant and mollusk macrofossils. Boreas 41:690–706.  https://doi.org/10.1111/j.1502-3885.2012.00263.x CrossRefGoogle Scholar
  40. Hájková P, Jamrichová E, Horsák M, Hájek M (2013) Holocene history of a Cladium mariscus-dominated calcareous fen in Slovakia: vegetation stability and landscape development. Preslia 85:289–315Google Scholar
  41. Hájková P, Horsák M, Hájek M, Jankovská V, Jamrichová E, Moutelíková J (2015) Using multi-proxy palaeoecology to test a relict status of refugial populations of calcareous-fen species in the Western Carpathians. Holocene 25:702–715.  https://doi.org/10.1177/0959683614566251 CrossRefGoogle Scholar
  42. Hammarlund D, Björck S, Buchardt B, Israelson C, Thomsen C (2003) Rapid hydrological changes during the Holocene revealed by stable isotope records of lacustrine carbonates from Lake Igelsjon, southern Sweden. Quat Sci Rev 22:353–370CrossRefGoogle Scholar
  43. Hansson A-M, Hiie S, Kihno K, Masauskaite R, Moe D, Seiriene V, Torske N (1996) A vegetation historical study of Johvikasoo, an ombrotrophic mire at Tuiu, Saaremaa, Estonia. PACT 51:39–56Google Scholar
  44. Hatté C, Jull AJT (2013) 14C of plant macrofossils. In: Elias S (ed) Encyclopedia of Quaternary science, 2nd edn. Elsevier, Amsterdam, pp 361–367.  https://doi.org/10.1016/B978-0-444-53643-3.00049-2 CrossRefGoogle Scholar
  45. Hawkesford M, Horts W, Kichey T, Lambers H, Schjoerring J, Møller IS, White P (2012) Functions of macronutrients. In: Marschner P (ed) Marschner’s mineral nutrition of higher plants, 3rd edn. Academic Press, London, pp 135–189.  https://doi.org/10.1016/B978-0-12-384905-2.00006-6 CrossRefGoogle Scholar
  46. Heinsalu A, Alliksaar T, Leeben A (2007) Sediment diatom assemblages and composition of pore-water dissolved organic matter reflect recent eutrophication history of Lake Peipsi (Estonia/Russia). Hydrobiologia 584:133–143.  https://doi.org/10.1007/s10750-007-8615-2 CrossRefGoogle Scholar
  47. Hicks S, Ammann B, Latałowa M, Pardoe H, Tinsley H (1996) European Pollen Monitoring Programme: project description and guidelines. Oulu University Press, OuluGoogle Scholar
  48. Hoogsteen MJJ, Lantinga EA, Bakker EJ, Grootaa JCJ, Tittonell PA (2015) Estimating soil organic carbon through loss on ignition: effects of ignition conditions and structural water loss. Eur J Soil Sci 66:320–328.  https://doi.org/10.1111/ejss.12224 CrossRefGoogle Scholar
  49. Hua Q, Barbetti M, Rakowski AZ (2013) Atmospheric radiocarbon for the period 1950–2010. Radiocarbon 55:2059–2072.  https://doi.org/10.2458/azu_js_rc.v55i2.16177 CrossRefGoogle Scholar
  50. Ilomets M, Truus L, Pajula R, Sepp K (2010) The species composition and structure of vascular plants and bryophytes on the water level gradient within a calcareous fen in north Estonia. Estonian J Ecol 59(1):19–38CrossRefGoogle Scholar
  51. Interpretation Manual of European Union Habitats (IMEUH) (2007) European Commission DG Environment Nature and Biodiversity. http://ec.europa.eu/environment/nature/legislation/habitatsdirective/docs/2007_07_im.pdf. Accessed 3 June 2018
  52. Jackson DA (1993) Stopping rules in principal components analysis: a comparison of heuristical and statistical approaches. Ecology 74:2,204–2,214CrossRefGoogle Scholar
  53. Jamrichová E, Hájková P, Horsák M, Rybníčková E, Lacina A, Hájek M (2014) Landscape history, calcareous fen development and historical events in the Slovak Eastern Carpathians. Veget Hist Archaeobot 23:497–513.  https://doi.org/10.1007/s00334-013-0416-0 CrossRefGoogle Scholar
  54. Jänes-Kapp K, Randma E, Soosaar M (2007) Saaremaa 2: Ajalugu, majandus, kultuur (Saaremaa 2, history, economics, culture; in Estonian). Koolibri, TallinnGoogle Scholar
  55. Jordan S, Velty S, Zeitz J (2007) The influence of degree of peat decomposition on phosphorus binding forms in fens. Mires Peat 2. http://www.mires-and-peat.net/
  56. Juggins S (2017) Analysis of Quaternary science data, package “rioja”. https://cran.r-project.org/web/packages/rioja/rioja.pdf
  57. Katz NJ, Katz SV, Skobeyeva EI (1977) Atlas rastitel’nyh oostatkov v torfje (Atlas of plant remains in peats, in Russian). Nedra, MoscowGoogle Scholar
  58. Königsson LK, Poska A (1998) Pitkasoo: a west Estonian Holocene reference site. Proc Estonian Acad Sci Geol 47:242–261Google Scholar
  59. Krug JC, Benny GL, Keller HW (2004) Coprophilous fungi. In: Mueller GM, Bills GF, Foster MS (eds) Biodiversity of fungi: inventory and monitoring methods. Elsevier, Amsterdam, pp 467–499CrossRefGoogle Scholar
  60. Lachance D, Lavoie C (2004) Vegetation of Sphagnum bogs in highly disturbed landscapes: relative influence of abiotic and anthropogenic factors. Appl Veget Sci 7:183–192CrossRefGoogle Scholar
  61. Laitinen J, Kondelin H, Heikkilä R (2011) Intermediate fen patches on a sloping rock outcrop in Koitelainen, Finnish Lapland. Mires Peat. http://www.mires-and-peat.net/
  62. Lamentowicz M, Słowiński M, Marcisz K et al (2015) Hydrological dynamics and fire history of the last 1300 years in western Siberia reconstructed from a high-resolution, ombrotrophic peat archive. Quat Res 84:312–325.  https://doi.org/10.1016/j.yqres.2015.09.002 CrossRefGoogle Scholar
  63. Landry J, Rochefort L (2012) The drainage of peatlands: impacts and rewetting techniques. Université Laval, Québec. http://www.gret-perg.ulaval.ca/uploads/tx_centrerecherche/Drainage_guide_Web.pdf
  64. Legendre P, Gallagher ED (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280.  https://doi.org/10.1007/s004420100716 CrossRefGoogle Scholar
  65. Levesque PEM, Dinel H, Larouche A (1988) Guide to the identification of plant macrofossils in Canadian peatlands, Research Branch, Agriculture Canada. Land Resource Research Centre, OttawaGoogle Scholar
  66. López-Vila J, Montoya E, Cañellas-Boltà N, Rull V (2014) Modern non-pollen palynomorphs sedimentation along an elevational gradient in the south-central Pyrenees (southwestern Europe) as a tool for Holocene paleoecological reconstruction. Holocene 24:327–345.  https://doi.org/10.1177/0959683613518593 CrossRefGoogle Scholar
  67. Maa-amet (Estonian Land Board) (2018) Historical map collection. Topographical map 1:50000 (1943). http://xgis.maaamet.ee/xGIS/XGis?app_id=UU41&user_id=at&bbox=381923.800927423,6463758.46776826,393312.865603942,6469724.1683131&LANG=1
  68. Mägi M, Jets I, Riiel R, Allmäe R, Limbo-Simovart J (2014) Pre-Viking and early Viking Age sacrificial place at Viidumäe, west Saaremaa. Archaeol Fieldwork Estonia 2014:153–162Google Scholar
  69. Malterer TJ, Verry ES, Erjavec J (1992) Fiber content and degree of decomposition in peats: review of natural methods. Soil Sci Soc Am J 56:1,200–1,211CrossRefGoogle Scholar
  70. Matthias I, Semmler MSS, Giesecke T (2015) Pollen diversity captures landscape structure and diversity. J Ecol 103:880–890.  https://doi.org/10.1111/1365-2745.12404 CrossRefGoogle Scholar
  71. Matthiesen MK, Larney FJ, Selinger LB, Olson AF (2005) Influence of loss on ignition temperature and heating time on ash content of compost and manure. Commun Soil Sci Plant Anal 36:2,561–2,573CrossRefGoogle Scholar
  72. Mauquoy D, Hughes PDM, van Geel B (2010) A protocol for plant macrofossil analysis of peat deposits. Mires and Peat 06:1–5Google Scholar
  73. Mazei YA, Bubnova OA (2007) Species composition and structure of testate amoebae community in a sphagnum bog at the initial stage of its formation. Biol Bull 34:619–628.  https://doi.org/10.1134/S1062359007060131 CrossRefGoogle Scholar
  74. Middleton BA, Holsten B, van Diggelen R (2006) Biodiversity management of fens and fen meadows by grazing, cutting and burning. Appl Veget Sci 9:307–316.  https://doi.org/10.1658/1402-2001(2006)9%5b307:bmofaf%5d2.0.co;2 CrossRefGoogle Scholar
  75. Minayeva TY, Bragg OM, Sirin AA (2017) Towards ecosystem-based restoration of peatland biodiversity. Mires Peat.  https://doi.org/10.19189/MaP.2013.OMB.150 Google Scholar
  76. Minkkine K (1999) Effect of forestry drainage on the carbon balance and radiative forcing of peatlands in Finland. Dissertation, University of Helsinki, HelsinkiGoogle Scholar
  77. Miola A (2012) Tools for non-pollen palynomorphs (NPPs) analysis: a list of Quaternary NPP types and reference literature in English language (1972–2011). Rev Palaeobot Palynol 186:142–161CrossRefGoogle Scholar
  78. Nilsson K (2016) Alkaline fens: valuable wetlands but difficult to manage. TemaNord 2016:515. Nordic Council of Ministers, Copenhagen. http://dx.doi.org/10.6027/TN2016-515
  79. Odgaard BV (1999) Fossil pollen as a record of past biodiversity. J Biogeogr 26:7–17CrossRefGoogle Scholar
  80. Ohenoja E (1995) Occurrence of Geoglossum, Trichoglossum and Microglossum (Ascomycota, Leotiales) in Finland. Doc Mycol 98–100:285–294Google Scholar
  81. Oksanen J, Blanchet GF, Friendly M et al (2017) Vegan: community ecology package. R package version 2.4-3. https://CRAN.R-project.org/package=vegan
  82. Paal J (1997) Eesti taimkatte kasvukohatüüpide klassifikatsioon (Classification of Estonian vegetation site types, in Estonian). Tartu Ülikool, EstoniaGoogle Scholar
  83. Paal J, Leibak E (2011) Estonian mires: inventory of habitats. Regio, TartuGoogle Scholar
  84. Pidek IA, Noryśkiewicz B, Dobrowolski R, Osadowski Z (2012) Indicative value of pollen analysis of spring-fed fens deposits. Ecológia 31:405–433.  https://doi.org/10.4149/ekol_2012_04_405 Google Scholar
  85. Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team (2019) nlme: Linear and nonlinear mixed effects models. R package version 3.1-139. https://CRAN.R-project.org/package=nlme
  86. Poska A, Saarse L (2002) Vegetation development and introduction of agriculture to Saaremaa Island, Estonia: the human response to shore displacement. Holocene 12:555–568.  https://doi.org/10.1191/0959683602hl567rp CrossRefGoogle Scholar
  87. Priede A, Mežaka A, Dobkeviča L, Grīnberga L (2016) Spontaneous revegetation of cutaway fens: can it result in valuable habitats? Mires Peat.  https://doi.org/10.19189/MaP.2016.OMB.220
  88. Ratas U, Kokovkin T (1989) Viidumae kompleksprofiili seletuskiri (Viidumae complex profile report (in Estonian) Tallinn, EstoniaGoogle Scholar
  89. Reille M (1992) Pollen et spores d’Europe et d’Afrique du nord. Laboratoire de Botanique historique et Palynologie, MarseilleGoogle Scholar
  90. Reimer PJ, Bard E, Bayliss A et al (2013) IntCal 13 and Marine 13 radiocarbon age calibration curves 0–50000 years cal bp. Radiocarbon 55:1,869–1,887CrossRefGoogle Scholar
  91. Reitalu T, Gerhold P, Poska A et al (2015) Novel insights into post-glacial vegetation change: functional and phylogenetic diversity in pollen records. J Veget Sci 26:911–922.  https://doi.org/10.1111/jvs.12300 CrossRefGoogle Scholar
  92. Reitalu T, Birks HJB, Bjune AE et al (2019) Patterns of pollen and plant richness across northern Europe. J Ecol.  https://doi.org/10.1111/1365-2745.131 Google Scholar
  93. Renberg I, Wik M (1985) Carbonaceous particles in lake sediments—pollutants from fossil fuel combustion. Ambio 14:161–163Google Scholar
  94. Renssen H, Seppä H, Heiri O, Roche DM, Goosse H, Fichefet T (2009) The spatial and temporal complexity of the Holocene thermal maximum. Nat Geosci 2:411–414CrossRefGoogle Scholar
  95. Riigi Ilmateenistus (State meteorological service) (2018) Ilmatarkus (weather accuracy). http://www.ilmateenistus.ee/kliima/climate-maps/temperature/?lang=ne. Accessed 23 Sept 2018
  96. Rodwell J (1995) British plant communities: aquatic communities, swamps and tall-herb fens, vol 5. Cambridge University Press, CambridgeGoogle Scholar
  97. Rodwell J (2016) European Red List of Habitats—mires habitat Group. D4.1a Small-sedge base-rich fen and calcareous spring mire. European Environment Agency (EEA). https://forum.eionet.europa.eu/european-red-list-habitats/library/terrestrial-habitats/d.-mires-and-bogs/d4.1a-small-sedge-base-rich-fen-and-calcareous-spring-mire. Accessed 13 June 2007
  98. Rose NL (1990) A method for the selective removal of inorganic ash particles from lake sediments. J Paleolimnol 4:61–67CrossRefGoogle Scholar
  99. Rozbrojová Z, Hájek M (2008) Changes in nutrient limitation of spring fen vegetation along environmental gradients in the West Carpathians. J Veget Sci 19:613–620.  https://doi.org/10.3170/2008-8-18416 CrossRefGoogle Scholar
  100. Rybníček K, Rybníčková E (1987) Palaeobotanical evidence of Middle Holocene stratigraphic hiatuses in Czechoslovakia and their explanation. Folia Geobot Phytotaxon 22:313–327CrossRefGoogle Scholar
  101. Saarse L, Vassiljev J (2010) Mattunud järvesetted peegeldavad Läänemere arengulugu (Ancient lake sediments show the history of the Baltic Sea, in Estonian). Eesti Loodus 96:41–42Google Scholar
  102. Saarse L, Vassiljev J, Rosentau A (2009) Ancylus Lake and Litorina Sea transition on the Island of Saaremaa, Estonia: a pilot study. Baltica 22:51–62Google Scholar
  103. Salmina L (2004) Factors influencing distribution of Cladium mariscus in Latvia. Ann Bot Fenn 41:367–371Google Scholar
  104. Sánchez ME, Chimner RA, Hribljan JA, Lilleskov EA, Suárez E (2017) Carbon dioxide and methane fluxes in grazed and undisturbed mountain peatlands in the Ecuadorian Andes. Mires Peat 19.  https://doi.org/10.19189/MaP.2017.OMB.277
  105. Šefferová Stanová V, Šeffer J, Janák M (2008) Management of Natura 2000 habitats—7230 Alkaline fens. The European Commission http://ec.europa.eu/environment/nature/natura2000/management/habitats/pdf/7230_Alkaline_fens.pdf. Accessed 6 Aug 2018
  106. Shumilovskikh LS, Schlütz F, Achterberg I, Bauerochse A, Leuschner HH (2015) Non-pollen palynomorphs from mid-Holocene peat of the raised bog Borsteler Moor (Lower Saxony, Germany). Stud Quat 32:5–18.  https://doi.org/10.1515/squa-2015-0001 Google Scholar
  107. Sillasoo Ü, Mauquoy D, Blundell A et al (2007) Peat multi-proxy data from Männikjärve bog as indicators of late Holocene climate changes in Estonia. Boreas 36:20–37.  https://doi.org/10.1111/j.1502-3885.2007.tb01177.x CrossRefGoogle Scholar
  108. Sjögersten S, van der Wal R, Loonen MJJE, Woodin SJ (2011) Recovery of ecosystem carbon fluxes and storage from herbivory. Biogeochemistry 106:357–370CrossRefGoogle Scholar
  109. Skene KR, Sprent JI, Raven JA, Herdman L (2000) Myrica gale L. J Ecol 88:1,079–1,094CrossRefGoogle Scholar
  110. Stammel B, Kiehl K, Pfadenhauer J (2003) Alternative management on fens: response of vegetation to grazing and mowing. Appl Veget Sci 6:245–254CrossRefGoogle Scholar
  111. Stivrins N, Ozola I, Gałka M et al (2017) Drivers of peat accumulation rate in a raised bog: impact of drainage, climate, and local vegetation composition. Mires Peat 19.  https://doi.org/10.19189/MaP.2016.OMB.262
  112. Tahvanainen T (2004) Water chemistry of mires in relation to the poor-rich vegetation gradient and contrasting geochemical zones of the north-eastern Fennoscandian shield. Folia Geobot 39:353–369.  https://doi.org/10.1007/BF02803208 CrossRefGoogle Scholar
  113. Talve T, Mürk M, Lindell T, Oja T (2014) Rhinanthus plants found in calcareous fens on Gotland (Sweden): are they related to R. osiliensis from Saaremaa (Estonia)? Biochem Syst Ecol 54:113–122CrossRefGoogle Scholar
  114. R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.r-project.org/
  115. Turney CSM, Coope GR, Harkness DD, Lowe JJ, Walker MJC (2000) Implications for the dating of Wisconsinan (Weichselian) late-glacial events of systematic radiocarbon age differences between terrestrial plant macrofossils from a site in SW Ireland. Quat Res 53:114–121CrossRefGoogle Scholar
  116. Urbanová Z, Ing S, Picek T (2012) Effect of drainage and restoration on the ecology of peatlands in the Šumava Mountains. Dissertation, University of South Bohemia in České BudějoviceGoogle Scholar
  117. Väliranta M, Oinonen M, Seppä H, Korkonen S, Juutinen S, Tuittila E-S (2014) Unexpected problems in AMS 14C dating of fen peat. Radiocarbon 56:95–108.  https://doi.org/10.2458/56.16917 CrossRefGoogle Scholar
  118. Väliranta M, Salojärvi N, Vuorsalo A, Juutinen S, Korhola A, Luoto M, Tuittila ES (2017) Holocene fen-bog transitions, current status in Finland and future perspectives. Holocene 27:752–764.  https://doi.org/10.1177/0959683616670471 CrossRefGoogle Scholar
  119. Van Geel B (2001) Non-pollen palynomorphs. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments, vol 3. Terrestrial, algal and siliceous indicators. Kluwer, Dordrecht, pp 99–119CrossRefGoogle Scholar
  120. Veski S (1996) A contribution to the history of vegetation and human impact in northern Saaremaa, Estonia, based on the biostratigraphy of the Surusoo mire: preliminary results. PACT 51:57–66Google Scholar
  121. Völlm C, Tanneberger F (2014) Shallow inundation favours decomposition of Phragmites australis leaves in a near-natural temperate fen. Mires and Peat 14. http://www.mires-and-peat.net/pages/volumes/map14/map1406.php
  122. Waller M, Carvalho F, Grant MJ, Bunting MJ, Brown K (2017) Disentangling the pollen signal from fen systems: modern and Holocene studies from southern and eastern England. Rev Palaeobot Palynol 238:15–33.  https://doi.org/10.1016/j.revpalbo.2016.11.007 CrossRefGoogle Scholar
  123. Weil RR, Brady NC (1985) The nature and properties of soil, 15th edn. Pearson Education, ColumbusGoogle Scholar
  124. Wolf EC, Cooper DJ (2015) Fens of the Sierra Nevada, California, USA: patterns of distribution and vegetation. Mires Peat 15. http://www.mires-and-peat.net/pages/volumes/map15/map1508.php
  125. Zhang XL, Wu GJ, Yao TD, Zhang CL, Yue YH (2011) Characterization of individual fly ash particles in surface snow at Urumqi Glacier No. 1, Eastern Tianshan. Chin Sci Bull 56:3,464–3,473.  https://doi.org/10.1007/s11434-011-4684-8 CrossRefGoogle Scholar
  126. Zobel M, Otto R, Laanisto L, Naranjo-Cigala A, Pärtel M, Fernández-Palacios JM (2011) The formation of species pools: historical habitat abundance affects current local diversity. Glob Ecol Biogeogr 20:251–259.  https://doi.org/10.1111/j.1466-8238.2010.00593.x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of GeologyTallinn University of TechnologyTallinnEstonia

Personalised recommendations